

 Navigation

 	
 index

 	
 next |

 	libuv 1.9.0 API documentation

Welcome to the libuv API documentation

Overview

libuv is a multi-platform support library with a focus on asynchronous I/O. It
was primarily developed for use by Node.js [http://nodejs.org], but it’s also used by Luvit [http://luvit.io],
Julia [http://julialang.org], pyuv [https://github.com/saghul/pyuv], and others [https://github.com/libuv/libuv/wiki/Projects-that-use-libuv].

Note

In case you find errors in this documentation you can help by sending
pull requests [https://github.com/libuv/libuv]!

Features

	Full-featured event loop backed by epoll, kqueue, IOCP, event ports.

	Asynchronous TCP and UDP sockets

	Asynchronous DNS resolution

	Asynchronous file and file system operations

	File system events

	ANSI escape code controlled TTY

	IPC with socket sharing, using Unix domain sockets or named pipes (Windows)

	Child processes

	Thread pool

	Signal handling

	High resolution clock

	Threading and synchronization primitives

Downloads

libuv can be downloaded from here [http://dist.libuv.org/dist/].

Installation

Installation instructions can be found on the README [https://github.com/libuv/libuv/blob/master/README.md].

Upgrading

Migration guides for different libuv versions, starting with 1.0.

	libuv 0.10 -> 1.0.0 migration guide

Documentation

	Design overview

	Error handling

	Version-checking macros and functions

	uv_loop_t — Event loop

	uv_handle_t — Base handle

	uv_req_t — Base request

	uv_timer_t — Timer handle

	uv_prepare_t — Prepare handle

	uv_check_t — Check handle

	uv_idle_t — Idle handle

	uv_async_t — Async handle

	uv_poll_t — Poll handle

	uv_signal_t — Signal handle

	uv_process_t — Process handle

	uv_stream_t — Stream handle

	uv_tcp_t — TCP handle

	uv_pipe_t — Pipe handle

	uv_tty_t — TTY handle

	uv_udp_t — UDP handle

	uv_fs_event_t — FS Event handle

	uv_fs_poll_t — FS Poll handle

	Filesystem operations

	Thread pool work scheduling

	DNS utility functions

	Shared library handling

	Threading and synchronization utilities

	Miscellaneous utilities

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

libuv 0.10 -> 1.0.0 migration guide

Some APIs changed quite a bit throughout the 1.0.0 development process. Here
is a migration guide for the most significant changes that happened after 0.10
was released.

Loop initialization and closing

In libuv 0.10 (and previous versions), loops were created with uv_loop_new, which
allocated memory for a new loop and initialized it; and destroyed with uv_loop_delete,
which destroyed the loop and freed the memory. Starting with 1.0, those are deprecated
and the user is responsible for allocating the memory and then initializing the loop.

libuv 0.10

uv_loop_t* loop = uv_loop_new();
...
uv_loop_delete(loop);

libuv 1.0

uv_loop_t* loop = malloc(sizeof *loop);
uv_loop_init(loop);
...
uv_loop_close(loop);
free(loop);

Note

Error handling was omitted for brevity. Check the documentation for uv_loop_init()
and uv_loop_close().

Error handling

Error handling had a major overhaul in libuv 1.0. In general, functions and status parameters
would get 0 for success and -1 for failure on libuv 0.10, and the user had to use uv_last_error
to fetch the error code, which was a positive number.

In 1.0, functions and status parameters contain the actual error code, which is 0 for success, or
a negative number in case of error.

libuv 0.10

... assume 'server' is a TCP server which is already listening
r = uv_listen((uv_stream_t*) server, 511, NULL);
if (r == -1) {
 uv_err_t err = uv_last_error(uv_default_loop());
 /* err.code contains UV_EADDRINUSE */
}

libuv 1.0

... assume 'server' is a TCP server which is already listening
r = uv_listen((uv_stream_t*) server, 511, NULL);
if (r < 0) {
 /* r contains UV_EADDRINUSE */
}

Threadpool changes

In libuv 0.10 Unix used a threadpool which defaulted to 4 threads, while Windows used the
QueueUserWorkItem API, which uses a Windows internal threadpool, which defaults to 512
threads per process.

In 1.0, we unified both implementations, so Windows now uses the same implementation Unix
does. The threadpool size can be set by exporting the UV_THREADPOOL_SIZE environment
variable. See Thread pool work scheduling.

Allocation callback API change

In libuv 0.10 the callback had to return a filled uv_buf_t by value:

uv_buf_t alloc_cb(uv_handle_t* handle, size_t size) {
 return uv_buf_init(malloc(size), size);
}

In libuv 1.0 a pointer to a buffer is passed to the callback, which the user
needs to fill:

void alloc_cb(uv_handle_t* handle, size_t size, uv_buf_t* buf) {
 buf->base = malloc(size);
 buf->len = size;
}

Unification of IPv4 / IPv6 APIs

libuv 1.0 unified the IPv4 and IPv6 APIS. There is no longer a uv_tcp_bind and uv_tcp_bind6
duality, there is only uv_tcp_bind() now.

IPv4 functions took struct sockaddr_in structures by value, and IPv6 functions took
struct sockaddr_in6. Now functions take a struct sockaddr* (note it’s a pointer).
It can be stack allocated.

libuv 0.10

struct sockaddr_in addr = uv_ip4_addr("0.0.0.0", 1234);
...
uv_tcp_bind(&server, addr)

libuv 1.0

struct sockaddr_in addr;
uv_ip4_addr("0.0.0.0", 1234, &addr)
...
uv_tcp_bind(&server, (const struct sockaddr*) &addr, 0);

The IPv4 and IPv6 struct creating functions (uv_ip4_addr() and uv_ip6_addr())
have also changed, make sure you check the documentation.

	..note::

	This change applies to all functions that made a distinction between IPv4 and IPv6
addresses.

Streams / UDP data receive callback API change

The streams and UDP data receive callbacks now get a pointer to a uv_buf_t buffer,
not a structure by value.

libuv 0.10

void on_read(uv_stream_t* handle,
 ssize_t nread,
 uv_buf_t buf) {
 ...
}

void recv_cb(uv_udp_t* handle,
 ssize_t nread,
 uv_buf_t buf,
 struct sockaddr* addr,
 unsigned flags) {
 ...
}

libuv 1.0

void on_read(uv_stream_t* handle,
 ssize_t nread,
 const uv_buf_t* buf) {
 ...
}

void recv_cb(uv_udp_t* handle,
 ssize_t nread,
 const uv_buf_t* buf,
 const struct sockaddr* addr,
 unsigned flags) {
 ...
}

Receiving handles over pipes API change

In libuv 0.10 (and earlier versions) the uv_read2_start function was used to start reading
data on a pipe, which could also result in the reception of handles over it. The callback
for such function looked like this:

void on_read(uv_pipe_t* pipe,
 ssize_t nread,
 uv_buf_t buf,
 uv_handle_type pending) {
 ...
}

In libuv 1.0, uv_read2_start was removed, and the user needs to check if there are pending
handles using uv_pipe_pending_count() and uv_pipe_pending_type() while in
the read callback:

void on_read(uv_stream_t* handle,
 ssize_t nread,
 const uv_buf_t* buf) {
 ...
 while (uv_pipe_pending_count((uv_pipe_t*) handle) != 0) {
 pending = uv_pipe_pending_type((uv_pipe_t*) handle);
 ...
 }
 ...
}

Extracting the file descriptor out of a handle

While it wasn’t supported by the API, users often accessed the libuv internals in
order to get access to the file descriptor of a TCP handle, for example.

fd = handle->io_watcher.fd;

This is now properly exposed through the uv_fileno() function.

uv_fs_readdir rename and API change

uv_fs_readdir returned a list of strings in the req->ptr field upon completion in
libuv 0.10. In 1.0, this function got renamed to uv_fs_scandir(), since it’s
actually implemented using scandir(3).

In addition, instead of allocating a full list strings, the user is able to get one
result at a time by using the uv_fs_scandir_next() function. This function
does not need to make a roundtrip to the threadpool, because libuv will keep the
list of dents returned by scandir(3) around.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

Design overview

libuv is cross-platform support library which was originally written for NodeJS. It’s designed
around the event-driven asynchronous I/O model.

The library provides much more than simply abstraction over different I/O polling mechanisms:
‘handles’ and ‘streams’ provide a high level abstraction for sockets and other entities;
cross-platform file I/O and threading functionality is also provided, amongst other things.

Here is a diagram illustrating the different parts that compose libuv and what subsystem they
relate to:

[image: _images/architecture.png]

Handles and requests

libuv provides users with 2 abstractions to work with, in combination with the event loop:
handles and requests.

Handles represent long-lived objects capable of performing certain operations while active. Some
examples: a prepare handle gets its callback called once every loop iteration when active, and
a TCP server handle get its connection callback called every time there is a new connection.

Requests represent (typically) short-lived operations. These operations can be performed over a
handle: write requests are used to write data on a handle; or standalone: getaddrinfo requests
don’t need a handle they run directly on the loop.

The I/O loop

The I/O (or event) loop is the central part of libuv. It establishes the content for all I/O
operations, and it’s meant to be tied to a single thread. One can run multiple event loops
as long as each runs in a different thread. The libuv event loop (or any other API involving
the loop or handles, for that matter) is not thread-safe except where stated otherwise.

The event loop follows the rather usual single threaded asynchronous I/O approach: all (network)
I/O is performed on non-blocking sockets which are polled using the best mechanism available
on the given platform: epoll on Linux, kqueue on OSX and other BSDs, event ports on SunOS and IOCP
on Windows. As part of a loop iteration the loop will block waiting for I/O activity on sockets
which have been added to the poller and callbacks will be fired indicating socket conditions
(readable, writable hangup) so handles can read, write or perform the desired I/O operation.

In order to better understand how the event loop operates, the following diagram illustrates all
stages of a loop iteration:

[image: _images/loop_iteration.png]

	The loop concept of ‘now’ is updated. The event loop caches the current time at the start of
the event loop tick in order to reduce the number of time-related system calls.

	If the loop is alive an iteration is started, otherwise the loop will exit immediately. So,
when is a loop considered to be alive? If a loop has active and ref’d handles, active
requests or closing handles it’s considered to be alive.

	Due timers are run. All active timers scheduled for a time before the loop’s concept of now
get their callbacks called.

	Pending callbacks are called. All I/O callbacks are called right after polling for I/O, for the
most part. There are cases, however, in which calling such a callback is deferred for the next
loop iteration. If the previous iteration deferred any I/O callback it will be run at this point.

	Idle handle callbacks are called. Despite the unfortunate name, idle handles are run on every
loop iteration, if they are active.

	Prepare handle callbacks are called. Prepare handles get their callbacks called right before
the loop will block for I/O.

	Poll timeout is calculated. Before blocking for I/O the loop calculates for how long it should
block. These are the rules when calculating the timeout:

	If the loop was run with the UV_RUN_NOWAIT flag, the timeout is 0.

	If the loop is going to be stopped (uv_stop() was called), the timeout is 0.

	If there are no active handles or requests, the timeout is 0.

	If there are any idle handles active, the timeout is 0.

	If there are any handles pending to be closed, the timeout is 0.

	If none of the above cases was matched, the timeout of the closest timer is taken, or
if there are no active timers, infinity.

	The loop blocks for I/O. At this point the loop will block for I/O for the timeout calculated
on the previous step. All I/O related handles that were monitoring a given file descriptor
for a read or write operation get their callbacks called at this point.

	Check handle callbacks are called. Check handles get their callbacks called right after the
loop has blocked for I/O. Check handles are essentially the counterpart of prepare handles.

	Close callbacks are called. If a handle was closed by calling uv_close() it will
get the close callback called.

	Special case in case the loop was run with UV_RUN_ONCE, as it implies forward progress.
It’s possible that no I/O callbacks were fired after blocking for I/O, but some time has passed
so there might be timers which are due, those timers get their callbacks called.

	Iteration ends. If the loop was run with UV_RUN_NOWAIT or UV_RUN_ONCE modes the
iteration is ended and uv_run() will return. If the loop was run with UV_RUN_DEFAULT
it will continue from the start if it’s still alive, otherwise it will also end.

Important

libuv uses a thread pool to make asynchronous file I/O operations possible, but
network I/O is always performed in a single thread, each loop’s thread.

Note

While the polling mechanism is different, libuv makes the execution model consistent
across Unix systems and Windows.

File I/O

Unlike network I/O, there are no platform-specific file I/O primitives libuv could rely on,
so the current approach is to run blocking file I/O operations in a thread pool.

For a thorough explanation of the cross-platform file I/O landscape, checkout
this post [http://blog.libtorrent.org/2012/10/asynchronous-disk-io/].

libuv currently uses a global thread pool on which all loops can queue work on. 3 types of
operations are currently run on this pool:

	Filesystem operations

	DNS functions (getaddrinfo and getnameinfo)

	User specified code via uv_queue_work()

Warning

See the Thread pool work scheduling section for more details, but keep in mind the thread pool size
is quite limited.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

Error handling

In libuv errors are negative numbered constants. As a rule of thumb, whenever
there is a status parameter, or an API functions returns an integer, a negative
number will imply an error.

Note

Implementation detail: on Unix error codes are the negated errno (or -errno), while on
Windows they are defined by libuv to arbitrary negative numbers.

Error constants

	
UV_E2BIG

	argument list too long

	
UV_EACCES

	permission denied

	
UV_EADDRINUSE

	address already in use

	
UV_EADDRNOTAVAIL

	address not available

	
UV_EAFNOSUPPORT

	address family not supported

	
UV_EAGAIN

	resource temporarily unavailable

	
UV_EAI_ADDRFAMILY

	address family not supported

	
UV_EAI_AGAIN

	temporary failure

	
UV_EAI_BADFLAGS

	bad ai_flags value

	
UV_EAI_BADHINTS

	invalid value for hints

	
UV_EAI_CANCELED

	request canceled

	
UV_EAI_FAIL

	permanent failure

	
UV_EAI_FAMILY

	ai_family not supported

	
UV_EAI_MEMORY

	out of memory

	
UV_EAI_NODATA

	no address

	
UV_EAI_NONAME

	unknown node or service

	
UV_EAI_OVERFLOW

	argument buffer overflow

	
UV_EAI_PROTOCOL

	resolved protocol is unknown

	
UV_EAI_SERVICE

	service not available for socket type

	
UV_EAI_SOCKTYPE

	socket type not supported

	
UV_EALREADY

	connection already in progress

	
UV_EBADF

	bad file descriptor

	
UV_EBUSY

	resource busy or locked

	
UV_ECANCELED

	operation canceled

	
UV_ECHARSET

	invalid Unicode character

	
UV_ECONNABORTED

	software caused connection abort

	
UV_ECONNREFUSED

	connection refused

	
UV_ECONNRESET

	connection reset by peer

	
UV_EDESTADDRREQ

	destination address required

	
UV_EEXIST

	file already exists

	
UV_EFAULT

	bad address in system call argument

	
UV_EFBIG

	file too large

	
UV_EHOSTUNREACH

	host is unreachable

	
UV_EINTR

	interrupted system call

	
UV_EINVAL

	invalid argument

	
UV_EIO

	i/o error

	
UV_EISCONN

	socket is already connected

	
UV_EISDIR

	illegal operation on a directory

	
UV_ELOOP

	too many symbolic links encountered

	
UV_EMFILE

	too many open files

	
UV_EMSGSIZE

	message too long

	
UV_ENAMETOOLONG

	name too long

	
UV_ENETDOWN

	network is down

	
UV_ENETUNREACH

	network is unreachable

	
UV_ENFILE

	file table overflow

	
UV_ENOBUFS

	no buffer space available

	
UV_ENODEV

	no such device

	
UV_ENOENT

	no such file or directory

	
UV_ENOMEM

	not enough memory

	
UV_ENONET

	machine is not on the network

	
UV_ENOPROTOOPT

	protocol not available

	
UV_ENOSPC

	no space left on device

	
UV_ENOSYS

	function not implemented

	
UV_ENOTCONN

	socket is not connected

	
UV_ENOTDIR

	not a directory

	
UV_ENOTEMPTY

	directory not empty

	
UV_ENOTSOCK

	socket operation on non-socket

	
UV_ENOTSUP

	operation not supported on socket

	
UV_EPERM

	operation not permitted

	
UV_EPIPE

	broken pipe

	
UV_EPROTO

	protocol error

	
UV_EPROTONOSUPPORT

	protocol not supported

	
UV_EPROTOTYPE

	protocol wrong type for socket

	
UV_ERANGE

	result too large

	
UV_EROFS

	read-only file system

	
UV_ESHUTDOWN

	cannot send after transport endpoint shutdown

	
UV_ESPIPE

	invalid seek

	
UV_ESRCH

	no such process

	
UV_ETIMEDOUT

	connection timed out

	
UV_ETXTBSY

	text file is busy

	
UV_EXDEV

	cross-device link not permitted

	
UV_UNKNOWN

	unknown error

	
UV_EOF

	end of file

	
UV_ENXIO

	no such device or address

	
UV_EMLINK

	too many links

API

	
const char* uv_strerror(interr)

	Returns the error message for the given error code. Leaks a few bytes
of memory when you call it with an unknown error code.

	
const char* uv_err_name(interr)

	Returns the error name for the given error code. Leaks a few bytes
of memory when you call it with an unknown error code.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

Version-checking macros and functions

Starting with version 1.0.0 libuv follows the semantic versioning [http://semver.org]
scheme. This means that new APIs can be introduced throughout the lifetime of
a major release. In this section you’ll find all macros and functions that
will allow you to write or compile code conditionally, in order to work with
multiple libuv versions.

Macros

	
UV_VERSION_MAJOR

	libuv version’s major number.

	
UV_VERSION_MINOR

	libuv version’s minor number.

	
UV_VERSION_PATCH

	libuv version’s patch number.

	
UV_VERSION_IS_RELEASE

	Set to 1 to indicate a release version of libuv, 0 for a development
snapshot.

	
UV_VERSION_SUFFIX

	libuv version suffix. Certain development releases such as Release Candidates
might have a suffix such as “rc”.

	
UV_VERSION_HEX

	Returns the libuv version packed into a single integer. 8 bits are used for
each component, with the patch number stored in the 8 least significant
bits. E.g. for libuv 1.2.3 this would be 0x010203.

New in version 1.7.0.

Functions

	
unsigned int uv_version(void)

	Returns UV_VERSION_HEX.

	
const char* uv_version_string(void)

	Returns the libuv version number as a string. For non-release versions the
version suffix is included.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_loop_t — Event loop

The event loop is the central part of libuv’s functionality. It takes care
of polling for i/o and scheduling callbacks to be run based on different sources
of events.

Data types

	
uv_loop_t

	Loop data type.

	
uv_run_mode

	Mode used to run the loop with uv_run().

typedef enum {
 UV_RUN_DEFAULT = 0,
 UV_RUN_ONCE,
 UV_RUN_NOWAIT
} uv_run_mode;

	
void (*uv_walk_cb)(uv_handle_t*handle, void*arg)

	Type definition for callback passed to uv_walk().

Public members

	
void* uv_loop_t.data

	Space for user-defined arbitrary data. libuv does not use this field. libuv does, however,
initialize it to NULL in uv_loop_init(), and it poisons the value (on debug builds)
on uv_loop_close().

API

	
int uv_loop_init(uv_loop_t*loop)

	Initializes the given uv_loop_t structure.

	
int uv_loop_configure(uv_loop_t*loop, uv_loop_optionoption, ...)

	
New in version 1.0.2.

Set additional loop options. You should normally call this before the
first call to uv_run() unless mentioned otherwise.

Returns 0 on success or a UV_E* error code on failure. Be prepared to
handle UV_ENOSYS; it means the loop option is not supported by the platform.

Supported options:

	UV_LOOP_BLOCK_SIGNAL: Block a signal when polling for new events. The
second argument to uv_loop_configure() is the signal number.

This operation is currently only implemented for SIGPROF signals,
to suppress unnecessary wakeups when using a sampling profiler.
Requesting other signals will fail with UV_EINVAL.

	
int uv_loop_close(uv_loop_t*loop)

	Releases all internal loop resources. Call this function only when the loop
has finished executing and all open handles and requests have been closed,
or it will return UV_EBUSY. After this function returns, the user can free
the memory allocated for the loop.

	
uv_loop_t* uv_default_loop(void)

	Returns the initialized default loop. It may return NULL in case of
allocation failure.

This function is just a convenient way for having a global loop throughout
an application, the default loop is in no way different than the ones
initialized with uv_loop_init(). As such, the default loop can (and
should) be closed with uv_loop_close() so the resources associated
with it are freed.

	
int uv_run(uv_loop_t*loop, uv_run_modemode)

	This function runs the event loop. It will act differently depending on the
specified mode:

	UV_RUN_DEFAULT: Runs the event loop until there are no more active and
referenced handles or requests. Returns non-zero if uv_stop()
was called and there are still active handles or requests. Returns
zero in all other cases.

	UV_RUN_ONCE: Poll for i/o once. Note that this function blocks if
there are no pending callbacks. Returns zero when done (no active handles
or requests left), or non-zero if more callbacks are expected (meaning
you should run the event loop again sometime in the future).

	UV_RUN_NOWAIT: Poll for i/o once but don’t block if there are no
pending callbacks. Returns zero if done (no active handles
or requests left), or non-zero if more callbacks are expected (meaning
you should run the event loop again sometime in the future).

	
int uv_loop_alive(const uv_loop_t*loop)

	Returns non-zero if there are active handles or request in the loop.

	
void uv_stop(uv_loop_t*loop)

	Stop the event loop, causing uv_run() to end as soon as
possible. This will happen not sooner than the next loop iteration.
If this function was called before blocking for i/o, the loop won’t block
for i/o on this iteration.

	
size_t uv_loop_size(void)

	Returns the size of the uv_loop_t structure. Useful for FFI binding
writers who don’t want to know the structure layout.

	
int uv_backend_fd(const uv_loop_t*loop)

	Get backend file descriptor. Only kqueue, epoll and event ports are
supported.

This can be used in conjunction with uv_run(loop, UV_RUN_NOWAIT) to
poll in one thread and run the event loop’s callbacks in another see
test/test-embed.c for an example.

Note

Embedding a kqueue fd in another kqueue pollset doesn’t work on all platforms. It’s not
an error to add the fd but it never generates events.

	
int uv_backend_timeout(const uv_loop_t*loop)

	Get the poll timeout. The return value is in milliseconds, or -1 for no
timeout.

	
uint64_t uv_now(const uv_loop_t*loop)

	Return the current timestamp in milliseconds. The timestamp is cached at
the start of the event loop tick, see uv_update_time() for details
and rationale.

The timestamp increases monotonically from some arbitrary point in time.
Don’t make assumptions about the starting point, you will only get
disappointed.

Note

Use uv_hrtime() if you need sub-millisecond granularity.

	
void uv_update_time(uv_loop_t*loop)

	Update the event loop’s concept of “now”. Libuv caches the current time
at the start of the event loop tick in order to reduce the number of
time-related system calls.

You won’t normally need to call this function unless you have callbacks
that block the event loop for longer periods of time, where “longer” is
somewhat subjective but probably on the order of a millisecond or more.

	
void uv_walk(uv_loop_t*loop, uv_walk_cbwalk_cb, void*arg)

	Walk the list of handles: walk_cb will be executed with the given arg.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_handle_t — Base handle

uv_handle_t is the base type for all libuv handle types.

Structures are aligned so that any libuv handle can be cast to uv_handle_t.
All API functions defined here work with any handle type.

Data types

	
uv_handle_t

	The base libuv handle type.

	
uv_any_handle

	Union of all handle types.

	
void (*uv_alloc_cb)(uv_handle_t*handle, size_tsuggested_size, uv_buf_t*buf)

	Type definition for callback passed to uv_read_start() and
uv_udp_recv_start(). The user must fill the supplied uv_buf_t
structure with whatever size, as long as it’s > 0. A suggested size (65536 at the moment)
is provided, but it doesn’t need to be honored. Setting the buffer’s length to 0
will trigger a UV_ENOBUFS error in the uv_udp_recv_cb or
uv_read_cb callback.

	
void (*uv_close_cb)(uv_handle_t*handle)

	Type definition for callback passed to uv_close().

Public members

	
uv_loop_t* uv_handle_t.loop

	Pointer to the uv_loop_t where the handle is running on. Readonly.

	
void* uv_handle_t.data

	Space for user-defined arbitrary data. libuv does not use this field.

API

	
int uv_is_active(const uv_handle_t*handle)

	Returns non-zero if the handle is active, zero if it’s inactive. What
“active” means depends on the type of handle:

	A uv_async_t handle is always active and cannot be deactivated, except
by closing it with uv_close().

	A uv_pipe_t, uv_tcp_t, uv_udp_t, etc. handle - basically any handle that
deals with i/o - is active when it is doing something that involves i/o,
like reading, writing, connecting, accepting new connections, etc.

	A uv_check_t, uv_idle_t, uv_timer_t, etc. handle is active when it has
been started with a call to uv_check_start(), uv_idle_start(), etc.

Rule of thumb: if a handle of type uv_foo_t has a uv_foo_start()
function, then it’s active from the moment that function is called.
Likewise, uv_foo_stop() deactivates the handle again.

	
int uv_is_closing(const uv_handle_t*handle)

	Returns non-zero if the handle is closing or closed, zero otherwise.

Note

This function should only be used between the initialization of the handle and the
arrival of the close callback.

	
void uv_close(uv_handle_t*handle, uv_close_cbclose_cb)

	Request handle to be closed. close_cb will be called asynchronously after
this call. This MUST be called on each handle before memory is released.

Handles that wrap file descriptors are closed immediately but
close_cb will still be deferred to the next iteration of the event loop.
It gives you a chance to free up any resources associated with the handle.

In-progress requests, like uv_connect_t or uv_write_t, are cancelled and
have their callbacks called asynchronously with status=UV_ECANCELED.

	
void uv_ref(uv_handle_t*handle)

	Reference the given handle. References are idempotent, that is, if a handle
is already referenced calling this function again will have no effect.

See Reference counting.

	
void uv_unref(uv_handle_t*handle)

	Un-reference the given handle. References are idempotent, that is, if a handle
is not referenced calling this function again will have no effect.

See Reference counting.

	
int uv_has_ref(const uv_handle_t*handle)

	Returns non-zero if the handle referenced, zero otherwise.

See Reference counting.

	
size_t uv_handle_size(uv_handle_typetype)

	Returns the size of the given handle type. Useful for FFI binding writers
who don’t want to know the structure layout.

Miscellaneous API functions

The following API functions take a uv_handle_t argument but they work
just for some handle types.

	
int uv_send_buffer_size(uv_handle_t*handle, int*value)

	Gets or sets the size of the send buffer that the operating
system uses for the socket.

If *value == 0, it will return the current send buffer size,
otherwise it will use *value to set the new send buffer size.

This function works for TCP, pipe and UDP handles on Unix and for TCP and
UDP handles on Windows.

Note

Linux will set double the size and return double the size of the original set value.

	
int uv_recv_buffer_size(uv_handle_t*handle, int*value)

	Gets or sets the size of the receive buffer that the operating
system uses for the socket.

If *value == 0, it will return the current receive buffer size,
otherwise it will use *value to set the new receive buffer size.

This function works for TCP, pipe and UDP handles on Unix and for TCP and
UDP handles on Windows.

Note

Linux will set double the size and return double the size of the original set value.

	
int uv_fileno(const uv_handle_t*handle, uv_os_fd_t*fd)

	Gets the platform dependent file descriptor equivalent.

The following handles are supported: TCP, pipes, TTY, UDP and poll. Passing
any other handle type will fail with UV_EINVAL.

If a handle doesn’t have an attached file descriptor yet or the handle
itself has been closed, this function will return UV_EBADF.

Warning

Be very careful when using this function. libuv assumes it’s in control of the file
descriptor so any change to it may lead to malfunction.

Reference counting

The libuv event loop (if run in the default mode) will run until there are no
active and referenced handles left. The user can force the loop to exit early
by unreferencing handles which are active, for example by calling uv_unref()
after calling uv_timer_start().

A handle can be referenced or unreferenced, the refcounting scheme doesn’t use
a counter, so both operations are idempotent.

All handles are referenced when active by default, see uv_is_active()
for a more detailed explanation on what being active involves.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_req_t — Base request

uv_req_t is the base type for all libuv request types.

Structures are aligned so that any libuv request can be cast to uv_req_t.
All API functions defined here work with any request type.

Data types

	
uv_req_t

	The base libuv request structure.

	
uv_any_req

	Union of all request types.

Public members

	
void* uv_req_t.data

	Space for user-defined arbitrary data. libuv does not use this field.

	
uv_req_type uv_req_t.type

	Indicated the type of request. Readonly.

typedef enum {
 UV_UNKNOWN_REQ = 0,
 UV_REQ,
 UV_CONNECT,
 UV_WRITE,
 UV_SHUTDOWN,
 UV_UDP_SEND,
 UV_FS,
 UV_WORK,
 UV_GETADDRINFO,
 UV_GETNAMEINFO,
 UV_REQ_TYPE_PRIVATE,
 UV_REQ_TYPE_MAX,
} uv_req_type;

API

	
int uv_cancel(uv_req_t*req)

	Cancel a pending request. Fails if the request is executing or has finished
executing.

Returns 0 on success, or an error code < 0 on failure.

Only cancellation of uv_fs_t, uv_getaddrinfo_t,
uv_getnameinfo_t and uv_work_t requests is
currently supported.

Cancelled requests have their callbacks invoked some time in the future.
It’s not safe to free the memory associated with the request until the
callback is called.

Here is how cancellation is reported to the callback:

	A uv_fs_t request has its req->result field set to UV_ECANCELED.

	A uv_work_t, uv_getaddrinfo_t or c:type:uv_getnameinfo_t
request has its callback invoked with status == UV_ECANCELED.

	
size_t uv_req_size(uv_req_typetype)

	Returns the size of the given request type. Useful for FFI binding writers
who don’t want to know the structure layout.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_timer_t — Timer handle

Timer handles are used to schedule callbacks to be called in the future.

Data types

	
uv_timer_t

	Timer handle type.

	
void (*uv_timer_cb)(uv_timer_t*handle)

	Type definition for callback passed to uv_timer_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

	
int uv_timer_init(uv_loop_t*loop, uv_timer_t*handle)

	Initialize the handle.

	
int uv_timer_start(uv_timer_t*handle, uv_timer_cbcb, uint64_ttimeout, uint64_trepeat)

	Start the timer. timeout and repeat are in milliseconds.

If timeout is zero, the callback fires on the next event loop iteration.
If repeat is non-zero, the callback fires first after timeout
milliseconds and then repeatedly after repeat milliseconds.

	
int uv_timer_stop(uv_timer_t*handle)

	Stop the timer, the callback will not be called anymore.

	
int uv_timer_again(uv_timer_t*handle)

	Stop the timer, and if it is repeating restart it using the repeat value
as the timeout. If the timer has never been started before it returns
UV_EINVAL.

	
void uv_timer_set_repeat(uv_timer_t*handle, uint64_trepeat)

	Set the repeat interval value in milliseconds. The timer will be scheduled
to run on the given interval, regardless of the callback execution
duration, and will follow normal timer semantics in the case of a
time-slice overrun.

For example, if a 50ms repeating timer first runs for 17ms, it will be
scheduled to run again 33ms later. If other tasks consume more than the
33ms following the first timer callback, then the callback will run as soon
as possible.

Note

If the repeat value is set from a timer callback it does not immediately take effect.
If the timer was non-repeating before, it will have been stopped. If it was repeating,
then the old repeat value will have been used to schedule the next timeout.

	
uint64_t uv_timer_get_repeat(const uv_timer_t*handle)

	Get the timer repeat value.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_prepare_t — Prepare handle

Prepare handles will run the given callback once per loop iteration, right
before polling for i/o.

Data types

	
uv_prepare_t

	Prepare handle type.

	
void (*uv_prepare_cb)(uv_prepare_t*handle)

	Type definition for callback passed to uv_prepare_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

	
int uv_prepare_init(uv_loop_t*loop, uv_prepare_t*prepare)

	Initialize the handle.

	
int uv_prepare_start(uv_prepare_t*prepare, uv_prepare_cbcb)

	Start the handle with the given callback.

	
int uv_prepare_stop(uv_prepare_t*prepare)

	Stop the handle, the callback will no longer be called.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_check_t — Check handle

Check handles will run the given callback once per loop iteration, right
after polling for i/o.

Data types

	
uv_check_t

	Check handle type.

	
void (*uv_check_cb)(uv_check_t*handle)

	Type definition for callback passed to uv_check_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

	
int uv_check_init(uv_loop_t*loop, uv_check_t*check)

	Initialize the handle.

	
int uv_check_start(uv_check_t*check, uv_check_cbcb)

	Start the handle with the given callback.

	
int uv_check_stop(uv_check_t*check)

	Stop the handle, the callback will no longer be called.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_idle_t — Idle handle

Idle handles will run the given callback once per loop iteration, right
before the uv_prepare_t handles.

Note

The notable difference with prepare handles is that when there are active idle handles,
the loop will perform a zero timeout poll instead of blocking for i/o.

Warning

Despite the name, idle handles will get their callbacks called on every loop iteration,
not when the loop is actually “idle”.

Data types

	
uv_idle_t

	Idle handle type.

	
void (*uv_idle_cb)(uv_idle_t*handle)

	Type definition for callback passed to uv_idle_start().

Public members

N/A

See also

The uv_handle_t members also apply.

API

	
int uv_idle_init(uv_loop_t*loop, uv_idle_t*idle)

	Initialize the handle.

	
int uv_idle_start(uv_idle_t*idle, uv_idle_cbcb)

	Start the handle with the given callback.

	
int uv_idle_stop(uv_idle_t*idle)

	Stop the handle, the callback will no longer be called.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_async_t — Async handle

Async handles allow the user to “wakeup” the event loop and get a callback
called from another thread.

Data types

	
uv_async_t

	Async handle type.

	
void (*uv_async_cb)(uv_async_t*handle)

	Type definition for callback passed to uv_async_init().

Public members

N/A

See also

The uv_handle_t members also apply.

API

	
int uv_async_init(uv_loop_t*loop, uv_async_t*async, uv_async_cbasync_cb)

	Initialize the handle. A NULL callback is allowed.

Note

Unlike other handle initialization functions, it immediately starts the handle.

	
int uv_async_send(uv_async_t*async)

	Wakeup the event loop and call the async handle’s callback.

Note

It’s safe to call this function from any thread. The callback will be called on the
loop thread.

Warning

libuv will coalesce calls to uv_async_send(), that is, not every call to it will
yield an execution of the callback. For example: if uv_async_send() is called 5
times in a row before the callback is called, the callback will only be called once. If
uv_async_send() is called again after the callback was called, it will be called
again.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_poll_t — Poll handle

Poll handles are used to watch file descriptors for readability,
writability and disconnection similar to the purpose of poll(2) [http://linux.die.net/man/2/poll].

The purpose of poll handles is to enable integrating external libraries that
rely on the event loop to signal it about the socket status changes, like
c-ares or libssh2. Using uv_poll_t for any other purpose is not recommended;
uv_tcp_t, uv_udp_t, etc. provide an implementation that is faster and
more scalable than what can be achieved with uv_poll_t, especially on
Windows.

It is possible that poll handles occasionally signal that a file descriptor is
readable or writable even when it isn’t. The user should therefore always
be prepared to handle EAGAIN or equivalent when it attempts to read from or
write to the fd.

It is not okay to have multiple active poll handles for the same socket, this
can cause libuv to busyloop or otherwise malfunction.

The user should not close a file descriptor while it is being polled by an
active poll handle. This can cause the handle to report an error,
but it might also start polling another socket. However the fd can be safely
closed immediately after a call to uv_poll_stop() or uv_close().

Note

On windows only sockets can be polled with poll handles. On Unix any file
descriptor that would be accepted by poll(2) [http://linux.die.net/man/2/poll] can be used.

Data types

	
uv_poll_t

	Poll handle type.

	
void (*uv_poll_cb)(uv_poll_t*handle, intstatus, intevents)

	Type definition for callback passed to uv_poll_start().

	
uv_poll_event

	Poll event types

enum uv_poll_event {
 UV_READABLE = 1,
 UV_WRITABLE = 2,
 UV_DISCONNECT = 4
};

Public members

N/A

See also

The uv_handle_t members also apply.

API

	
int uv_poll_init(uv_loop_t*loop, uv_poll_t*handle, intfd)

	Initialize the handle using a file descriptor.

Changed in version 1.2.2: the file descriptor is set to non-blocking mode.

	
int uv_poll_init_socket(uv_loop_t*loop, uv_poll_t*handle, uv_os_sock_tsocket)

	Initialize the handle using a socket descriptor. On Unix this is identical
to uv_poll_init(). On windows it takes a SOCKET handle.

Changed in version 1.2.2: the socket is set to non-blocking mode.

	
int uv_poll_start(uv_poll_t*handle, intevents, uv_poll_cbcb)

	Starts polling the file descriptor. events is a bitmask consisting made up
of UV_READABLE, UV_WRITABLE and UV_DISCONNECT. As soon as an event is detected
the callback will be called with status set to 0, and the detected events set on the
events field.

The UV_DISCONNECT event is optional in the sense that it may not be
reported and the user is free to ignore it, but it can help optimize the shutdown
path because an extra read or write call might be avoided.

If an error happens while polling, status will be < 0 and corresponds
with one of the UV_E* error codes (see Error handling). The user should
not close the socket while the handle is active. If the user does that
anyway, the callback may be called reporting an error status, but this
is not guaranteed.

Note

Calling uv_poll_start() on a handle that is already active is fine. Doing so
will update the events mask that is being watched for.

Changed in version 1.9.0: Added the UV_DISCONNECT event.

	
int uv_poll_stop(uv_poll_t*poll)

	Stop polling the file descriptor, the callback will no longer be called.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_signal_t — Signal handle

Signal handles implement Unix style signal handling on a per-event loop bases.

Reception of some signals is emulated on Windows:

	SIGINT is normally delivered when the user presses CTRL+C. However, like
on Unix, it is not generated when terminal raw mode is enabled.

	SIGBREAK is delivered when the user pressed CTRL + BREAK.

	SIGHUP is generated when the user closes the console window. On SIGHUP the
program is given approximately 10 seconds to perform cleanup. After that
Windows will unconditionally terminate it.

	SIGWINCH is raised whenever libuv detects that the console has been
resized. SIGWINCH is emulated by libuv when the program uses a uv_tty_t
handle to write to the console. SIGWINCH may not always be delivered in a
timely manner; libuv will only detect size changes when the cursor is
being moved. When a readable uv_tty_t handle is used in raw mode,
resizing the console buffer will also trigger a SIGWINCH signal.

Watchers for other signals can be successfully created, but these signals
are never received. These signals are: SIGILL, SIGABRT, SIGFPE, SIGSEGV,
SIGTERM and SIGKILL.

Calls to raise() or abort() to programmatically raise a signal are
not detected by libuv; these will not trigger a signal watcher.

Note

On Linux SIGRT0 and SIGRT1 (signals 32 and 33) are used by the NPTL pthreads library to
manage threads. Installing watchers for those signals will lead to unpredictable behavior
and is strongly discouraged. Future versions of libuv may simply reject them.

Data types

	
uv_signal_t

	Signal handle type.

	
void (*uv_signal_cb)(uv_signal_t*handle, intsignum)

	Type definition for callback passed to uv_signal_start().

Public members

	
int uv_signal_t.signum

	Signal being monitored by this handle. Readonly.

See also

The uv_handle_t members also apply.

API

	
int uv_signal_init(uv_loop_t*loop, uv_signal_t*signal)

	Initialize the handle.

	
int uv_signal_start(uv_signal_t*signal, uv_signal_cbcb, intsignum)

	Start the handle with the given callback, watching for the given signal.

	
int uv_signal_stop(uv_signal_t*signal)

	Stop the handle, the callback will no longer be called.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_process_t — Process handle

Process handles will spawn a new process and allow the user to control it and
establish communication channels with it using streams.

Data types

	
uv_process_t

	Process handle type.

	
uv_process_options_t

	Options for spawning the process (passed to uv_spawn().

typedef struct uv_process_options_s {
 uv_exit_cb exit_cb;
 const char* file;
 char** args;
 char** env;
 const char* cwd;
 unsigned int flags;
 int stdio_count;
 uv_stdio_container_t* stdio;
 uv_uid_t uid;
 uv_gid_t gid;
} uv_process_options_t;

	
void (*uv_exit_cb)(uv_process_t*, int64_texit_status, intterm_signal)

	Type definition for callback passed in uv_process_options_t which
will indicate the exit status and the signal that caused the process to
terminate, if any.

	
uv_process_flags

	Flags to be set on the flags field of uv_process_options_t.

enum uv_process_flags {
 /*
 * Set the child process' user id.
 */
 UV_PROCESS_SETUID = (1 << 0),
 /*
 * Set the child process' group id.
 */
 UV_PROCESS_SETGID = (1 << 1),
 /*
 * Do not wrap any arguments in quotes, or perform any other escaping, when
 * converting the argument list into a command line string. This option is
 * only meaningful on Windows systems. On Unix it is silently ignored.
 */
 UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS = (1 << 2),
 /*
 * Spawn the child process in a detached state - this will make it a process
 * group leader, and will effectively enable the child to keep running after
 * the parent exits. Note that the child process will still keep the
 * parent's event loop alive unless the parent process calls uv_unref() on
 * the child's process handle.
 */
 UV_PROCESS_DETACHED = (1 << 3),
 /*
 * Hide the subprocess console window that would normally be created. This
 * option is only meaningful on Windows systems. On Unix it is silently
 * ignored.
 */
 UV_PROCESS_WINDOWS_HIDE = (1 << 4)
};

	
uv_stdio_container_t

	Container for each stdio handle or fd passed to a child process.

typedef struct uv_stdio_container_s {
 uv_stdio_flags flags;
 union {
 uv_stream_t* stream;
 int fd;
 } data;
} uv_stdio_container_t;

	
uv_stdio_flags

	Flags specifying how a stdio should be transmitted to the child process.

typedef enum {
 UV_IGNORE = 0x00,
 UV_CREATE_PIPE = 0x01,
 UV_INHERIT_FD = 0x02,
 UV_INHERIT_STREAM = 0x04,
 /*
 * When UV_CREATE_PIPE is specified, UV_READABLE_PIPE and UV_WRITABLE_PIPE
 * determine the direction of flow, from the child process' perspective. Both
 * flags may be specified to create a duplex data stream.
 */
 UV_READABLE_PIPE = 0x10,
 UV_WRITABLE_PIPE = 0x20
} uv_stdio_flags;

Public members

	
uv_process_t.pid

	The PID of the spawned process. It’s set after calling uv_spawn().

Note

The uv_handle_t members also apply.

	
uv_process_options_t.exit_cb

	Callback called after the process exits.

	
uv_process_options_t.file

	Path pointing to the program to be executed.

	
uv_process_options_t.args

	Command line arguments. args[0] should be the path to the program. On
Windows this uses CreateProcess which concatenates the arguments into a
string this can cause some strange errors. See the
UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS flag on uv_process_flags.

	
uv_process_options_t.env

	Environment for the new process. If NULL the parents environment is used.

	
uv_process_options_t.cwd

	Current working directory for the subprocess.

	
uv_process_options_t.flags

	Various flags that control how uv_spawn() behaves. See
uv_process_flags.

	
uv_process_options_t.stdio_count

	

	
uv_process_options_t.stdio

	The stdio field points to an array of uv_stdio_container_t
structs that describe the file descriptors that will be made available to
the child process. The convention is that stdio[0] points to stdin,
fd 1 is used for stdout, and fd 2 is stderr.

Note

On Windows file descriptors greater than 2 are available to the child process only if
the child processes uses the MSVCRT runtime.

	
uv_process_options_t.uid

	

	
uv_process_options_t.gid

	Libuv can change the child process’ user/group id. This happens only when
the appropriate bits are set in the flags fields.

Note

This is not supported on Windows, uv_spawn() will fail and set the error
to UV_ENOTSUP.

	
uv_stdio_container_t.flags

	Flags specifying how the stdio container should be passed to the child. See
uv_stdio_flags.

	
uv_stdio_container_t.data

	Union containing either the stream or fd to be passed on to the child
process.

API

	
void uv_disable_stdio_inheritance(void)

	Disables inheritance for file descriptors / handles that this process
inherited from its parent. The effect is that child processes spawned by
this process don’t accidentally inherit these handles.

It is recommended to call this function as early in your program as possible,
before the inherited file descriptors can be closed or duplicated.

Note

This function works on a best-effort basis: there is no guarantee that libuv can discover
all file descriptors that were inherited. In general it does a better job on Windows than
it does on Unix.

	
int uv_spawn(uv_loop_t*loop, uv_process_t*handle, const uv_process_options_t*options)

	Initializes the process handle and starts the process. If the process is
successfully spawned, this function will return 0. Otherwise, the
negative error code corresponding to the reason it couldn’t spawn is
returned.

Possible reasons for failing to spawn would include (but not be limited to)
the file to execute not existing, not having permissions to use the setuid or
setgid specified, or not having enough memory to allocate for the new
process.

	
int uv_process_kill(uv_process_t*handle, intsignum)

	Sends the specified signal to the given process handle. Check the documentation
on uv_signal_t — Signal handle for signal support, specially on Windows.

	
int uv_kill(intpid, intsignum)

	Sends the specified signal to the given PID. Check the documentation
on uv_signal_t — Signal handle for signal support, specially on Windows.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_stream_t — Stream handle

Stream handles provide an abstraction of a duplex communication channel.
uv_stream_t is an abstract type, libuv provides 3 stream implementations
in the for of uv_tcp_t, uv_pipe_t and uv_tty_t.

Data types

	
uv_stream_t

	Stream handle type.

	
uv_connect_t

	Connect request type.

	
uv_shutdown_t

	Shutdown request type.

	
uv_write_t

	Write request type.

	
void (*uv_read_cb)(uv_stream_t*stream, ssize_tnread, const uv_buf_t*buf)

	Callback called when data was read on a stream.

nread is > 0 if there is data available or < 0 on error. When we’ve
reached EOF, nread will be set to UV_EOF. When nread < 0,
the buf parameter might not point to a valid buffer; in that case
buf.len and buf.base are both set to 0.

Note

nread might be 0, which does not indicate an error or EOF. This
is equivalent to EAGAIN or EWOULDBLOCK under read(2).

The callee is responsible for stopping closing the stream when an error happens
by calling uv_read_stop() or uv_close(). Trying to read
from the stream again is undefined.

The callee is responsible for freeing the buffer, libuv does not reuse it.
The buffer may be a null buffer (where buf->base=NULL and buf->len=0) on
error.

	
void (*uv_write_cb)(uv_write_t*req, intstatus)

	Callback called after data was written on a stream. status will be 0 in
case of success, < 0 otherwise.

	
void (*uv_connect_cb)(uv_connect_t*req, intstatus)

	Callback called after a connection started by uv_connect() is done.
status will be 0 in case of success, < 0 otherwise.

	
void (*uv_shutdown_cb)(uv_shutdown_t*req, intstatus)

	Callback called after s shutdown request has been completed. status will
be 0 in case of success, < 0 otherwise.

	
void (*uv_connection_cb)(uv_stream_t*server, intstatus)

	Callback called when a stream server has received an incoming connection.
The user can accept the connection by calling uv_accept().
status will be 0 in case of success, < 0 otherwise.

Public members

	
size_t uv_stream_t.write_queue_size

	Contains the amount of queued bytes waiting to be sent. Readonly.

	
uv_stream_t* uv_connect_t.handle

	Pointer to the stream where this connection request is running.

	
uv_stream_t* uv_shutdown_t.handle

	Pointer to the stream where this shutdown request is running.

	
uv_stream_t* uv_write_t.handle

	Pointer to the stream where this write request is running.

	
uv_stream_t* uv_write_t.send_handle

	Pointer to the stream being sent using this write request..

See also

The uv_handle_t members also apply.

API

	
int uv_shutdown(uv_shutdown_t*req, uv_stream_t*handle, uv_shutdown_cbcb)

	Shutdown the outgoing (write) side of a duplex stream. It waits for pending
write requests to complete. The handle should refer to a initialized stream.
req should be an uninitialized shutdown request struct. The cb is called
after shutdown is complete.

	
int uv_listen(uv_stream_t*stream, intbacklog, uv_connection_cbcb)

	Start listening for incoming connections. backlog indicates the number of
connections the kernel might queue, same as listen(2) [http://linux.die.net/man/2/listen]. When a new
incoming connection is received the uv_connection_cb callback is
called.

	
int uv_accept(uv_stream_t*server, uv_stream_t*client)

	This call is used in conjunction with uv_listen() to accept incoming
connections. Call this function after receiving a uv_connection_cb
to accept the connection. Before calling this function the client handle must
be initialized. < 0 return value indicates an error.

When the uv_connection_cb callback is called it is guaranteed that
this function will complete successfully the first time. If you attempt to use
it more than once, it may fail. It is suggested to only call this function once
per uv_connection_cb call.

Note

server and client must be handles running on the same loop.

	
int uv_read_start(uv_stream_t*stream, uv_alloc_cballoc_cb, uv_read_cbread_cb)

	Read data from an incoming stream. The uv_read_cb callback will
be made several times until there is no more data to read or
uv_read_stop() is called.

	
int uv_read_stop(uv_stream_t*)

	Stop reading data from the stream. The uv_read_cb callback will
no longer be called.

This function is idempotent and may be safely called on a stopped stream.

	
int uv_write(uv_write_t*req, uv_stream_t*handle, const uv_buf_tbufs[], unsigned intnbufs, uv_write_cbcb)

	Write data to stream. Buffers are written in order. Example:

void cb(uv_write_t* req, int status) {
 /* Logic which handles the write result */
}

uv_buf_t a[] = {
 { .base = "1", .len = 1 },
 { .base = "2", .len = 1 }
};

uv_buf_t b[] = {
 { .base = "3", .len = 1 },
 { .base = "4", .len = 1 }
};

uv_write_t req1;
uv_write_t req2;

/* writes "1234" */
uv_write(&req1, stream, a, 2, cb);
uv_write(&req2, stream, b, 2, cb);

	
int uv_write2(uv_write_t*req, uv_stream_t*handle, const uv_buf_tbufs[], unsigned intnbufs, uv_stream_t*send_handle, uv_write_cbcb)

	Extended write function for sending handles over a pipe. The pipe must be
initialized with ipc == 1.

Note

send_handle must be a TCP socket or pipe, which is a server or a connection (listening
or connected state). Bound sockets or pipes will be assumed to be servers.

	
int uv_try_write(uv_stream_t*handle, const uv_buf_tbufs[], unsigned intnbufs)

	Same as uv_write(), but won’t queue a write request if it can’t be
completed immediately.

Will return either:

	> 0: number of bytes written (can be less than the supplied buffer size).

	< 0: negative error code (UV_EAGAIN is returned if no data can be sent
immediately).

	
int uv_is_readable(const uv_stream_t*handle)

	Returns 1 if the stream is readable, 0 otherwise.

	
int uv_is_writable(const uv_stream_t*handle)

	Returns 1 if the stream is writable, 0 otherwise.

	
int uv_stream_set_blocking(uv_stream_t*handle, intblocking)

	Enable or disable blocking mode for a stream.

When blocking mode is enabled all writes complete synchronously. The
interface remains unchanged otherwise, e.g. completion or failure of the
operation will still be reported through a callback which is made
asynchronously.

Warning

Relying too much on this API is not recommended. It is likely to change
significantly in the future.

Currently only works on Windows for uv_pipe_t handles.
On UNIX platforms, all uv_stream_t handles are supported.

Also libuv currently makes no ordering guarantee when the blocking mode
is changed after write requests have already been submitted. Therefore it is
recommended to set the blocking mode immediately after opening or creating
the stream.

Changed in version 1.4.0: UNIX implementation added.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_tcp_t — TCP handle

TCP handles are used to represent both TCP streams and servers.

uv_tcp_t is a ‘subclass’ of uv_stream_t.

Data types

	
uv_tcp_t

	TCP handle type.

Public members

N/A

See also

The uv_stream_t members also apply.

API

	
int uv_tcp_init(uv_loop_t*loop, uv_tcp_t*handle)

	Initialize the handle. No socket is created as of yet.

	
int uv_tcp_init_ex(uv_loop_t*loop, uv_tcp_t*handle, unsigned intflags)

	Initialize the handle with the specified flags. At the moment only the lower 8 bits
of the flags parameter are used as the socket domain. A socket will be created
for the given domain. If the specified domain is AF_UNSPEC no socket is created,
just like uv_tcp_init().

New in version 1.7.0.

	
int uv_tcp_open(uv_tcp_t*handle, uv_os_sock_tsock)

	Open an existing file descriptor or SOCKET as a TCP handle.

Changed in version 1.2.1: the file descriptor is set to non-blocking mode.

Note

The passed file descriptor or SOCKET is not checked for its type, but
it’s required that it represents a valid stream socket.

	
int uv_tcp_nodelay(uv_tcp_t*handle, intenable)

	Enable / disable Nagle’s algorithm.

	
int uv_tcp_keepalive(uv_tcp_t*handle, intenable, unsigned intdelay)

	Enable / disable TCP keep-alive. delay is the initial delay in seconds,
ignored when enable is zero.

	
int uv_tcp_simultaneous_accepts(uv_tcp_t*handle, intenable)

	Enable / disable simultaneous asynchronous accept requests that are
queued by the operating system when listening for new TCP connections.

This setting is used to tune a TCP server for the desired performance.
Having simultaneous accepts can significantly improve the rate of accepting
connections (which is why it is enabled by default) but may lead to uneven
load distribution in multi-process setups.

	
int uv_tcp_bind(uv_tcp_t*handle, const struct sockaddr*addr, unsigned intflags)

	Bind the handle to an address and port. addr should point to an
initialized struct sockaddr_in or struct sockaddr_in6.

When the port is already taken, you can expect to see an UV_EADDRINUSE
error from either uv_tcp_bind(), uv_listen() or
uv_tcp_connect(). That is, a successful call to this function does
not guarantee that the call to uv_listen() or uv_tcp_connect()
will succeed as well.

flags can contain UV_TCP_IPV6ONLY, in which case dual-stack support
is disabled and only IPv6 is used.

	
int uv_tcp_getsockname(const uv_tcp_t*handle, struct sockaddr*name, int*namelen)

	Get the current address to which the handle is bound. addr must point to
a valid and big enough chunk of memory, struct sockaddr_storage is
recommended for IPv4 and IPv6 support.

	
int uv_tcp_getpeername(const uv_tcp_t*handle, struct sockaddr*name, int*namelen)

	Get the address of the peer connected to the handle. addr must point to
a valid and big enough chunk of memory, struct sockaddr_storage is
recommended for IPv4 and IPv6 support.

	
int uv_tcp_connect(uv_connect_t*req, uv_tcp_t*handle, const struct sockaddr*addr, uv_connect_cbcb)

	Establish an IPv4 or IPv6 TCP connection. Provide an initialized TCP handle
and an uninitialized uv_connect_t. addr should point to an
initialized struct sockaddr_in or struct sockaddr_in6.

The callback is made when the connection has been established or when a
connection error happened.

See also

The uv_stream_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_pipe_t — Pipe handle

Pipe handles provide an abstraction over local domain sockets on Unix and named
pipes on Windows.

uv_pipe_t is a ‘subclass’ of uv_stream_t.

Data types

	
uv_pipe_t

	Pipe handle type.

Public members

N/A

See also

The uv_stream_t members also apply.

API

	
int uv_pipe_init(uv_loop_t*loop, uv_pipe_t*handle, intipc)

	Initialize a pipe handle. The ipc argument is a boolean to indicate if
this pipe will be used for handle passing between processes.

	
int uv_pipe_open(uv_pipe_t*handle, uv_filefile)

	Open an existing file descriptor or HANDLE as a pipe.

Changed in version 1.2.1: the file descriptor is set to non-blocking mode.

Note

The passed file descriptor or HANDLE is not checked for its type, but
it’s required that it represents a valid pipe.

	
int uv_pipe_bind(uv_pipe_t*handle, const char*name)

	Bind the pipe to a file path (Unix) or a name (Windows).

Note

Paths on Unix get truncated to sizeof(sockaddr_un.sun_path) bytes, typically between
92 and 108 bytes.

	
void uv_pipe_connect(uv_connect_t*req, uv_pipe_t*handle, const char*name, uv_connect_cbcb)

	Connect to the Unix domain socket or the named pipe.

Note

Paths on Unix get truncated to sizeof(sockaddr_un.sun_path) bytes, typically between
92 and 108 bytes.

	
int uv_pipe_getsockname(const uv_pipe_t*handle, char*buffer, size_t*size)

	Get the name of the Unix domain socket or the named pipe.

A preallocated buffer must be provided. The size parameter holds the length
of the buffer and it’s set to the number of bytes written to the buffer on
output. If the buffer is not big enough UV_ENOBUFS will be returned and
len will contain the required size.

Changed in version 1.3.0: the returned length no longer includes the terminating null byte,
and the buffer is not null terminated.

	
int uv_pipe_getpeername(const uv_pipe_t*handle, char*buffer, size_t*size)

	Get the name of the Unix domain socket or the named pipe to which the handle
is connected.

A preallocated buffer must be provided. The size parameter holds the length
of the buffer and it’s set to the number of bytes written to the buffer on
output. If the buffer is not big enough UV_ENOBUFS will be returned and
len will contain the required size.

New in version 1.3.0.

	
void uv_pipe_pending_instances(uv_pipe_t*handle, intcount)

	Set the number of pending pipe instance handles when the pipe server is
waiting for connections.

Note

This setting applies to Windows only.

	
int uv_pipe_pending_count(uv_pipe_t*handle)

	

	
uv_handle_type uv_pipe_pending_type(uv_pipe_t*handle)

	Used to receive handles over IPC pipes.

First - call uv_pipe_pending_count(), if it’s > 0 then initialize
a handle of the given type, returned by uv_pipe_pending_type()
and call uv_accept(pipe, handle).

See also

The uv_stream_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_tty_t — TTY handle

TTY handles represent a stream for the console.

uv_tty_t is a ‘subclass’ of uv_stream_t.

Data types

	
uv_tty_t

	TTY handle type.

	
uv_tty_mode_t

	
New in version 1.2.0.

TTY mode type:

typedef enum {
 /* Initial/normal terminal mode */
 UV_TTY_MODE_NORMAL,
 /* Raw input mode (On Windows, ENABLE_WINDOW_INPUT is also enabled) */
 UV_TTY_MODE_RAW,
 /* Binary-safe I/O mode for IPC (Unix-only) */
 UV_TTY_MODE_IO
} uv_tty_mode_t;

Public members

N/A

See also

The uv_stream_t members also apply.

API

	
int uv_tty_init(uv_loop_t*loop, uv_tty_t*handle, uv_filefd, intreadable)

	Initialize a new TTY stream with the given file descriptor. Usually the
file descriptor will be:

	0 = stdin

	1 = stdout

	2 = stderr

readable, specifies if you plan on calling uv_read_start() with
this stream. stdin is readable, stdout is not.

On Unix this function will determine the path of the fd of the terminal
using ttyname_r(3) [http://linux.die.net/man/3/ttyname_r], open it, and use it if the passed file descriptor
refers to a TTY. This lets libuv put the tty in non-blocking mode without
affecting other processes that share the tty.

This function is not thread safe on systems that don’t support
ioctl TIOCGPTN or TIOCPTYGNAME, for instance OpenBSD and Solaris.

Note

If reopening the TTY fails, libuv falls back to blocking writes for
non-readable TTY streams.

Changed in version 1.9.0:: the path of the TTY is determined by
ttyname_r(3) [http://linux.die.net/man/3/ttyname_r]. In earlier versions libuv opened
/dev/tty instead.

Changed in version 1.5.0:: trying to initialize a TTY stream with a file
descriptor that refers to a file returns UV_EINVAL
on UNIX.

	
int uv_tty_set_mode(uv_tty_t*handle, uv_tty_mode_tmode)

	
Changed in version 1.2.0:: the mode is specified as a
uv_tty_mode_t value.

Set the TTY using the specified terminal mode.

	
int uv_tty_reset_mode(void)

	To be called when the program exits. Resets TTY settings to default
values for the next process to take over.

This function is async signal-safe on Unix platforms but can fail with error
code UV_EBUSY if you call it when execution is inside
uv_tty_set_mode().

	
int uv_tty_get_winsize(uv_tty_t*handle, int*width, int*height)

	Gets the current Window size. On success it returns 0.

See also

The uv_stream_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_udp_t — UDP handle

UDP handles encapsulate UDP communication for both clients and servers.

Data types

	
uv_udp_t

	UDP handle type.

	
uv_udp_send_t

	UDP send request type.

	
uv_udp_flags

	Flags used in uv_udp_bind() and uv_udp_recv_cb..

enum uv_udp_flags {
 /* Disables dual stack mode. */
 UV_UDP_IPV6ONLY = 1,
 /*
 * Indicates message was truncated because read buffer was too small. The
 * remainder was discarded by the OS. Used in uv_udp_recv_cb.
 */
 UV_UDP_PARTIAL = 2,
 /*
 * Indicates if SO_REUSEADDR will be set when binding the handle in
 * uv_udp_bind.
 * This sets the SO_REUSEPORT socket flag on the BSDs and OS X. On other
 * Unix platforms, it sets the SO_REUSEADDR flag. What that means is that
 * multiple threads or processes can bind to the same address without error
 * (provided they all set the flag) but only the last one to bind will receive
 * any traffic, in effect "stealing" the port from the previous listener.
 */
 UV_UDP_REUSEADDR = 4
};

	
void (*uv_udp_send_cb)(uv_udp_send_t*req, intstatus)

	Type definition for callback passed to uv_udp_send(), which is
called after the data was sent.

	
void (*uv_udp_recv_cb)(uv_udp_t*handle, ssize_tnread, const uv_buf_t*buf, const struct sockaddr*addr, unsignedflags)

	Type definition for callback passed to uv_udp_recv_start(), which
is called when the endpoint receives data.

	handle: UDP handle

	nread: Number of bytes that have been received.
0 if there is no more data to read. You may discard or repurpose
the read buffer. Note that 0 may also mean that an empty datagram
was received (in this case addr is not NULL). < 0 if a transmission
error was detected.

	buf: uv_buf_t with the received data.

	addr: struct sockaddr* containing the address of the sender.
Can be NULL. Valid for the duration of the callback only.

	flags: One or more or’ed UV_UDP_* constants. Right now only
UV_UDP_PARTIAL is used.

Note

The receive callback will be called with nread == 0 and addr == NULL when there is
nothing to read, and with nread == 0 and addr != NULL when an empty UDP packet is
received.

	
uv_membership

	Membership type for a multicast address.

typedef enum {
 UV_LEAVE_GROUP = 0,
 UV_JOIN_GROUP
} uv_membership;

Public members

	
size_t uv_udp_t.send_queue_size

	Number of bytes queued for sending. This field strictly shows how much
information is currently queued.

	
size_t uv_udp_t.send_queue_count

	Number of send requests currently in the queue awaiting to be processed.

	
uv_udp_t* uv_udp_send_t.handle

	UDP handle where this send request is taking place.

See also

The uv_handle_t members also apply.

API

	
int uv_udp_init(uv_loop_t*loop, uv_udp_t*handle)

	Initialize a new UDP handle. The actual socket is created lazily.
Returns 0 on success.

	
int uv_udp_init_ex(uv_loop_t*loop, uv_udp_t*handle, unsigned intflags)

	Initialize the handle with the specified flags. At the moment the lower 8 bits
of the flags parameter are used as the socket domain. A socket will be created
for the given domain. If the specified domain is AF_UNSPEC no socket is created,
just like uv_udp_init().

New in version 1.7.0.

	
int uv_udp_open(uv_udp_t*handle, uv_os_sock_tsock)

	Opens an existing file descriptor or Windows SOCKET as a UDP handle.

Unix only:
The only requirement of the sock argument is that it follows the datagram
contract (works in unconnected mode, supports sendmsg()/recvmsg(), etc).
In other words, other datagram-type sockets like raw sockets or netlink
sockets can also be passed to this function.

Changed in version 1.2.1: the file descriptor is set to non-blocking mode.

Note

The passed file descriptor or SOCKET is not checked for its type, but
it’s required that it represents a valid datagram socket.

	
int uv_udp_bind(uv_udp_t*handle, const struct sockaddr*addr, unsigned intflags)

	Bind the UDP handle to an IP address and port.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	addr – struct sockaddr_in or struct sockaddr_in6
with the address and port to bind to.

	flags – Indicate how the socket will be bound,
UV_UDP_IPV6ONLY and UV_UDP_REUSEADDR are supported.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_getsockname(const uv_udp_t*handle, struct sockaddr*name, int*namelen)

	Get the local IP and port of the UDP handle.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init() and bound.

	name – Pointer to the structure to be filled with the address data.
In order to support IPv4 and IPv6 struct sockaddr_storage should be
used.

	namelen – On input it indicates the data of the name field. On
output it indicates how much of it was filled.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_set_membership(uv_udp_t*handle, const char*multicast_addr, const char*interface_addr, uv_membershipmembership)

	Set membership for a multicast address

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	multicast_addr – Multicast address to set membership for.

	interface_addr – Interface address.

	membership – Should be UV_JOIN_GROUP or UV_LEAVE_GROUP.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_set_multicast_loop(uv_udp_t*handle, inton)

	Set IP multicast loop flag. Makes multicast packets loop back to
local sockets.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	on – 1 for on, 0 for off.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_set_multicast_ttl(uv_udp_t*handle, intttl)

	Set the multicast ttl.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	ttl – 1 through 255.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_set_multicast_interface(uv_udp_t*handle, const char*interface_addr)

	Set the multicast interface to send or receive data on.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	interface_addr – interface address.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_set_broadcast(uv_udp_t*handle, inton)

	Set broadcast on or off.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	on – 1 for on, 0 for off.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_set_ttl(uv_udp_t*handle, intttl)

	Set the time to live.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	ttl – 1 through 255.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_send(uv_udp_send_t*req, uv_udp_t*handle, const uv_buf_tbufs[], unsigned intnbufs, const struct sockaddr*addr, uv_udp_send_cbsend_cb)

	Send data over the UDP socket. If the socket has not previously been bound
with uv_udp_bind() it will be bound to 0.0.0.0
(the “all interfaces” IPv4 address) and a random port number.

	Parameters:	
	req – UDP request handle. Need not be initialized.

	handle – UDP handle. Should have been initialized with
uv_udp_init().

	bufs – List of buffers to send.

	nbufs – Number of buffers in bufs.

	addr – struct sockaddr_in or struct sockaddr_in6 with the
address and port of the remote peer.

	send_cb – Callback to invoke when the data has been sent out.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_try_send(uv_udp_t*handle, const uv_buf_tbufs[], unsigned intnbufs, const struct sockaddr*addr)

	Same as uv_udp_send(), but won’t queue a send request if it can’t
be completed immediately.

	Returns:	>= 0: number of bytes sent (it matches the given buffer size).
< 0: negative error code (UV_EAGAIN is returned when the message
can’t be sent immediately).

	
int uv_udp_recv_start(uv_udp_t*handle, uv_alloc_cballoc_cb, uv_udp_recv_cbrecv_cb)

	Prepare for receiving data. If the socket has not previously been bound
with uv_udp_bind() it is bound to 0.0.0.0 (the “all interfaces”
IPv4 address) and a random port number.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	alloc_cb – Callback to invoke when temporary storage is needed.

	recv_cb – Callback to invoke with received data.

	Returns:	0 on success, or an error code < 0 on failure.

	
int uv_udp_recv_stop(uv_udp_t*handle)

	Stop listening for incoming datagrams.

	Parameters:	
	handle – UDP handle. Should have been initialized with
uv_udp_init().

	Returns:	0 on success, or an error code < 0 on failure.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_fs_event_t — FS Event handle

FS Event handles allow the user to monitor a given path for changes, for example,
if the file was renamed or there was a generic change in it. This handle uses
the best backend for the job on each platform.

Data types

	
uv_fs_event_t

	FS Event handle type.

	
void (*uv_fs_event_cb)(uv_fs_event_t*handle, const char*filename, intevents, intstatus)

	Callback passed to uv_fs_event_start() which will be called repeatedly
after the handle is started. If the handle was started with a directory the
filename parameter will be a relative path to a file contained in the directory.
The events parameter is an ORed mask of uv_fs_event elements.

	
uv_fs_event

	Event types that uv_fs_event_t handles monitor.

enum uv_fs_event {
 UV_RENAME = 1,
 UV_CHANGE = 2
};

	
uv_fs_event_flags

	Flags that can be passed to uv_fs_event_start() to control its
behavior.

enum uv_fs_event_flags {
 /*
 * By default, if the fs event watcher is given a directory name, we will
 * watch for all events in that directory. This flags overrides this behavior
 * and makes fs_event report only changes to the directory entry itself. This
 * flag does not affect individual files watched.
 * This flag is currently not implemented yet on any backend.
 */
 UV_FS_EVENT_WATCH_ENTRY = 1,
 /*
 * By default uv_fs_event will try to use a kernel interface such as inotify
 * or kqueue to detect events. This may not work on remote filesystems such
 * as NFS mounts. This flag makes fs_event fall back to calling stat() on a
 * regular interval.
 * This flag is currently not implemented yet on any backend.
 */
 UV_FS_EVENT_STAT = 2,
 /*
 * By default, event watcher, when watching directory, is not registering
 * (is ignoring) changes in it's subdirectories.
 * This flag will override this behaviour on platforms that support it.
 */
 UV_FS_EVENT_RECURSIVE = 4
};

Public members

N/A

See also

The uv_handle_t members also apply.

API

	
int uv_fs_event_init(uv_loop_t*loop, uv_fs_event_t*handle)

	Initialize the handle.

	
int uv_fs_event_start(uv_fs_event_t*handle, uv_fs_event_cbcb, const char*path, unsigned intflags)

	Start the handle with the given callback, which will watch the specified
path for changes. flags can be an ORed mask of uv_fs_event_flags.

Note

Currently the only supported flag is UV_FS_EVENT_RECURSIVE and
only on OSX and Windows.

	
int uv_fs_event_stop(uv_fs_event_t*handle)

	Stop the handle, the callback will no longer be called.

	
int uv_fs_event_getpath(uv_fs_event_t*handle, char*buffer, size_t*size)

	Get the path being monitored by the handle. The buffer must be preallocated
by the user. Returns 0 on success or an error code < 0 in case of failure.
On success, buffer will contain the path and size its length. If the buffer
is not big enough UV_ENOBUFS will be returned and len will be set to the
required size.

Changed in version 1.3.0: the returned length no longer includes the terminating null byte,
and the buffer is not null terminated.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

uv_fs_poll_t — FS Poll handle

FS Poll handles allow the user to monitor a given path for changes. Unlike
uv_fs_event_t, fs poll handles use stat to detect when a file has
changed so they can work on file systems where fs event handles can’t.

Data types

	
uv_fs_poll_t

	FS Poll handle type.

	
void (*uv_fs_poll_cb)(uv_fs_poll_t*handle, intstatus, const uv_stat_t*prev, const uv_stat_t*curr)

	Callback passed to uv_fs_poll_start() which will be called repeatedly
after the handle is started, when any change happens to the monitored path.

The callback is invoked with status < 0 if path does not exist
or is inaccessible. The watcher is not stopped but your callback is
not called again until something changes (e.g. when the file is created
or the error reason changes).

When status == 0, the callback receives pointers to the old and new
uv_stat_t structs. They are valid for the duration of the
callback only.

Public members

N/A

See also

The uv_handle_t members also apply.

API

	
int uv_fs_poll_init(uv_loop_t*loop, uv_fs_poll_t*handle)

	Initialize the handle.

	
int uv_fs_poll_start(uv_fs_poll_t*handle, uv_fs_poll_cbpoll_cb, const char*path, unsigned intinterval)

	Check the file at path for changes every interval milliseconds.

Note

For maximum portability, use multi-second intervals. Sub-second intervals will not detect
all changes on many file systems.

	
int uv_fs_poll_stop(uv_fs_poll_t*handle)

	Stop the handle, the callback will no longer be called.

	
int uv_fs_poll_getpath(uv_fs_poll_t*handle, char*buffer, size_t*size)

	Get the path being monitored by the handle. The buffer must be preallocated
by the user. Returns 0 on success or an error code < 0 in case of failure.
On success, buffer will contain the path and size its length. If the buffer
is not big enough UV_ENOBUFS will be returned and len will be set to the
required size.

Changed in version 1.3.0: the returned length no longer includes the terminating null byte,
and the buffer is not null terminated.

See also

The uv_handle_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

Filesystem operations

libuv provides a wide variety of cross-platform sync and async filesystem
operations. All functions defined in this document take a callback, which is
allowed to be NULL. If the callback is NULL the request is completed synchronously,
otherwise it will be performed asynchronously.

All file operations are run on the threadpool, see Thread pool work scheduling for information
on the threadpool size.

Data types

	
uv_fs_t

	Filesystem request type.

	
uv_timespec_t

	Portable equivalent of struct timespec.

typedef struct {
 long tv_sec;
 long tv_nsec;
} uv_timespec_t;

	
uv_stat_t

	Portable equivalent of struct stat.

typedef struct {
 uint64_t st_dev;
 uint64_t st_mode;
 uint64_t st_nlink;
 uint64_t st_uid;
 uint64_t st_gid;
 uint64_t st_rdev;
 uint64_t st_ino;
 uint64_t st_size;
 uint64_t st_blksize;
 uint64_t st_blocks;
 uint64_t st_flags;
 uint64_t st_gen;
 uv_timespec_t st_atim;
 uv_timespec_t st_mtim;
 uv_timespec_t st_ctim;
 uv_timespec_t st_birthtim;
} uv_stat_t;

	
uv_fs_type

	Filesystem request type.

typedef enum {
 UV_FS_UNKNOWN = -1,
 UV_FS_CUSTOM,
 UV_FS_OPEN,
 UV_FS_CLOSE,
 UV_FS_READ,
 UV_FS_WRITE,
 UV_FS_SENDFILE,
 UV_FS_STAT,
 UV_FS_LSTAT,
 UV_FS_FSTAT,
 UV_FS_FTRUNCATE,
 UV_FS_UTIME,
 UV_FS_FUTIME,
 UV_FS_ACCESS,
 UV_FS_CHMOD,
 UV_FS_FCHMOD,
 UV_FS_FSYNC,
 UV_FS_FDATASYNC,
 UV_FS_UNLINK,
 UV_FS_RMDIR,
 UV_FS_MKDIR,
 UV_FS_MKDTEMP,
 UV_FS_RENAME,
 UV_FS_SCANDIR,
 UV_FS_LINK,
 UV_FS_SYMLINK,
 UV_FS_READLINK,
 UV_FS_CHOWN,
 UV_FS_FCHOWN
} uv_fs_type;

	
uv_dirent_t

	Cross platform (reduced) equivalent of struct dirent.
Used in uv_fs_scandir_next().

typedef enum {
 UV_DIRENT_UNKNOWN,
 UV_DIRENT_FILE,
 UV_DIRENT_DIR,
 UV_DIRENT_LINK,
 UV_DIRENT_FIFO,
 UV_DIRENT_SOCKET,
 UV_DIRENT_CHAR,
 UV_DIRENT_BLOCK
} uv_dirent_type_t;

typedef struct uv_dirent_s {
 const char* name;
 uv_dirent_type_t type;
} uv_dirent_t;

Public members

	
uv_loop_t* uv_fs_t.loop

	Loop that started this request and where completion will be reported.
Readonly.

	
uv_fs_type uv_fs_t.fs_type

	FS request type.

	
const char* uv_fs_t.path

	Path affecting the request.

	
ssize_t uv_fs_t.result

	Result of the request. < 0 means error, success otherwise. On requests such
as uv_fs_read() or uv_fs_write() it indicates the amount of
data that was read or written, respectively.

	
uv_stat_t uv_fs_t.statbuf

	Stores the result of uv_fs_stat() and other stat requests.

	
void* uv_fs_t.ptr

	Stores the result of uv_fs_readlink() and serves as an alias to
statbuf.

See also

The uv_req_t members also apply.

API

	
void uv_fs_req_cleanup(uv_fs_t*req)

	Cleanup request. Must be called after a request is finished to deallocate
any memory libuv might have allocated.

	
int uv_fs_close(uv_loop_t*loop, uv_fs_t*req, uv_filefile, uv_fs_cbcb)

	Equivalent to close(2) [http://linux.die.net/man/2/close].

	
int uv_fs_open(uv_loop_t*loop, uv_fs_t*req, const char*path, intflags, intmode, uv_fs_cbcb)

	Equivalent to open(2) [http://linux.die.net/man/2/open].

Note

On Windows libuv uses CreateFileW and thus the file is always opened
in binary mode. Because of this the O_BINARY and O_TEXT flags are not
supported.

	
int uv_fs_read(uv_loop_t*loop, uv_fs_t*req, uv_filefile, const uv_buf_tbufs[], unsigned intnbufs, int64_toffset, uv_fs_cbcb)

	Equivalent to preadv(2) [http://linux.die.net/man/2/preadv].

	
int uv_fs_unlink(uv_loop_t*loop, uv_fs_t*req, const char*path, uv_fs_cbcb)

	Equivalent to unlink(2) [http://linux.die.net/man/2/unlink].

	
int uv_fs_write(uv_loop_t*loop, uv_fs_t*req, uv_filefile, const uv_buf_tbufs[], unsigned intnbufs, int64_toffset, uv_fs_cbcb)

	Equivalent to pwritev(2) [http://linux.die.net/man/2/pwritev].

	
int uv_fs_mkdir(uv_loop_t*loop, uv_fs_t*req, const char*path, intmode, uv_fs_cbcb)

	Equivalent to mkdir(2) [http://linux.die.net/man/2/mkdir].

Note

mode is currently not implemented on Windows.

	
int uv_fs_mkdtemp(uv_loop_t*loop, uv_fs_t*req, const char*tpl, uv_fs_cbcb)

	Equivalent to mkdtemp(3) [http://linux.die.net/man/3/mkdtemp].

Note

The result can be found as a null terminated string at req->path.

	
int uv_fs_rmdir(uv_loop_t*loop, uv_fs_t*req, const char*path, uv_fs_cbcb)

	Equivalent to rmdir(2) [http://linux.die.net/man/2/rmdir].

	
int uv_fs_scandir(uv_loop_t*loop, uv_fs_t*req, const char*path, intflags, uv_fs_cbcb)

	

	
int uv_fs_scandir_next(uv_fs_t*req, uv_dirent_t*ent)

	Equivalent to scandir(3) [http://linux.die.net/man/3/scandir], with a slightly different API. Once the callback
for the request is called, the user can use uv_fs_scandir_next() to
get ent populated with the next directory entry data. When there are no
more entries UV_EOF will be returned.

Note

Unlike scandir(3), this function does not return the ”.” and ”..” entries.

Note

On Linux, getting the type of an entry is only supported by some filesystems (btrfs, ext2,
ext3 and ext4 at the time of this writing), check the getdents(2) [http://linux.die.net/man/2/getdents] man page.

	
int uv_fs_stat(uv_loop_t*loop, uv_fs_t*req, const char*path, uv_fs_cbcb)

	

	
int uv_fs_fstat(uv_loop_t*loop, uv_fs_t*req, uv_filefile, uv_fs_cbcb)

	

	
int uv_fs_lstat(uv_loop_t*loop, uv_fs_t*req, const char*path, uv_fs_cbcb)

	Equivalent to stat(2) [http://linux.die.net/man/2/stat], fstat(2) [http://linux.die.net/man/2/fstat] and fstat(2) [http://linux.die.net/man/2/fstat] respectively.

	
int uv_fs_rename(uv_loop_t*loop, uv_fs_t*req, const char*path, const char*new_path, uv_fs_cbcb)

	Equivalent to rename(2) [http://linux.die.net/man/2/rename].

	
int uv_fs_fsync(uv_loop_t*loop, uv_fs_t*req, uv_filefile, uv_fs_cbcb)

	Equivalent to fsync(2) [http://linux.die.net/man/2/fsync].

	
int uv_fs_fdatasync(uv_loop_t*loop, uv_fs_t*req, uv_filefile, uv_fs_cbcb)

	Equivalent to fdatasync(2) [http://linux.die.net/man/2/fdatasync].

	
int uv_fs_ftruncate(uv_loop_t*loop, uv_fs_t*req, uv_filefile, int64_toffset, uv_fs_cbcb)

	Equivalent to ftruncate(2) [http://linux.die.net/man/2/ftruncate].

	
int uv_fs_sendfile(uv_loop_t*loop, uv_fs_t*req, uv_fileout_fd, uv_filein_fd, int64_tin_offset, size_tlength, uv_fs_cbcb)

	Limited equivalent to sendfile(2) [http://linux.die.net/man/2/sendfile].

	
int uv_fs_access(uv_loop_t*loop, uv_fs_t*req, const char*path, intmode, uv_fs_cbcb)

	Equivalent to access(2) [http://linux.die.net/man/2/access] on Unix. Windows uses GetFileAttributesW().

	
int uv_fs_chmod(uv_loop_t*loop, uv_fs_t*req, const char*path, intmode, uv_fs_cbcb)

	

	
int uv_fs_fchmod(uv_loop_t*loop, uv_fs_t*req, uv_filefile, intmode, uv_fs_cbcb)

	Equivalent to chmod(2) [http://linux.die.net/man/2/chmod] and fchmod(2) [http://linux.die.net/man/2/fchmod] respectively.

	
int uv_fs_utime(uv_loop_t*loop, uv_fs_t*req, const char*path, doubleatime, doublemtime, uv_fs_cbcb)

	

	
int uv_fs_futime(uv_loop_t*loop, uv_fs_t*req, uv_filefile, doubleatime, doublemtime, uv_fs_cbcb)

	Equivalent to utime(2) [http://linux.die.net/man/2/utime] and futime(2) [http://linux.die.net/man/2/futime] respectively.

	
int uv_fs_link(uv_loop_t*loop, uv_fs_t*req, const char*path, const char*new_path, uv_fs_cbcb)

	Equivalent to link(2) [http://linux.die.net/man/2/link].

	
int uv_fs_symlink(uv_loop_t*loop, uv_fs_t*req, const char*path, const char*new_path, intflags, uv_fs_cbcb)

	Equivalent to symlink(2) [http://linux.die.net/man/2/symlink].

Note

On Windows the flags parameter can be specified to control how the symlink will
be created:

	UV_FS_SYMLINK_DIR: indicates that path points to a directory.

	UV_FS_SYMLINK_JUNCTION: request that the symlink is created
using junction points.

	
int uv_fs_readlink(uv_loop_t*loop, uv_fs_t*req, const char*path, uv_fs_cbcb)

	Equivalent to readlink(2) [http://linux.die.net/man/2/readlink].

	
int uv_fs_realpath(uv_loop_t*loop, uv_fs_t*req, const char*path, uv_fs_cbcb)

	Equivalent to realpath(3) [http://linux.die.net/man/3/realpath] on Unix. Windows uses GetFinalPathNameByHandle().

Note

This function is not implemented on Windows XP and Windows Server 2003.
On these systems, UV_ENOSYS is returned.

New in version 1.8.0.

	
int uv_fs_chown(uv_loop_t*loop, uv_fs_t*req, const char*path, uv_uid_tuid, uv_gid_tgid, uv_fs_cbcb)

	

	
int uv_fs_fchown(uv_loop_t*loop, uv_fs_t*req, uv_filefile, uv_uid_tuid, uv_gid_tgid, uv_fs_cbcb)

	Equivalent to chown(2) [http://linux.die.net/man/2/chown] and fchown(2) [http://linux.die.net/man/2/fchown] respectively.

Note

These functions are not implemented on Windows.

See also

The uv_req_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

Thread pool work scheduling

libuv provides a threadpool which can be used to run user code and get notified
in the loop thread. This thread pool is internally used to run all filesystem
operations, as well as getaddrinfo and getnameinfo requests.

Its default size is 4, but it can be changed at startup time by setting the
UV_THREADPOOL_SIZE environment variable to any value (the absolute maximum
is 128).

The threadpool is global and shared across all event loops. When a particular
function makes use of the threadpool (i.e. when using uv_queue_work())
libuv preallocates and initializes the maximum number of threads allowed by
UV_THREADPOOL_SIZE. This causes a relatively minor memory overhead
(~1MB for 128 threads) but increases the performance of threading at runtime.

Note

Note that even though a global thread pool which is shared across all events
loops is used, the functions are not thread safe.

Data types

	
uv_work_t

	Work request type.

	
void (*uv_work_cb)(uv_work_t*req)

	Callback passed to uv_queue_work() which will be run on the thread
pool.

	
void (*uv_after_work_cb)(uv_work_t*req, intstatus)

	Callback passed to uv_queue_work() which will be called on the loop
thread after the work on the threadpool has been completed. If the work
was cancelled using uv_cancel() status will be UV_ECANCELED.

Public members

	
uv_loop_t* uv_work_t.loop

	Loop that started this request and where completion will be reported.
Readonly.

See also

The uv_req_t members also apply.

API

	
int uv_queue_work(uv_loop_t*loop, uv_work_t*req, uv_work_cbwork_cb, uv_after_work_cbafter_work_cb)

	Initializes a work request which will run the given work_cb in a thread
from the threadpool. Once work_cb is completed, after_work_cb will be
called on the loop thread.

This request can be cancelled with uv_cancel().

See also

The uv_req_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

DNS utility functions

libuv provides asynchronous variants of getaddrinfo and getnameinfo.

Data types

	
uv_getaddrinfo_t

	getaddrinfo request type.

	
void (*uv_getaddrinfo_cb)(uv_getaddrinfo_t*req, intstatus, struct addrinfo*res)

	Callback which will be called with the getaddrinfo request result once
complete. In case it was cancelled, status will have a value of
UV_ECANCELED.

	
uv_getnameinfo_t

	getnameinfo request type.

	
void (*uv_getnameinfo_cb)(uv_getnameinfo_t*req, intstatus, const char*hostname, const char*service)

	Callback which will be called with the getnameinfo request result once
complete. In case it was cancelled, status will have a value of
UV_ECANCELED.

Public members

	
uv_loop_t* uv_getaddrinfo_t.loop

	Loop that started this getaddrinfo request and where completion will be
reported. Readonly.

	
struct addrinfo* uv_getaddrinfo_t.addrinfo

	Pointer to a struct addrinfo containing the result. Must be freed by the user
with uv_freeaddrinfo().

Changed in version 1.3.0: the field is declared as public.

	
uv_loop_t* uv_getnameinfo_t.loop

	Loop that started this getnameinfo request and where completion will be
reported. Readonly.

	
char[NI_MAXHOST] uv_getnameinfo_t.host

	Char array containing the resulting host. It’s null terminated.

Changed in version 1.3.0: the field is declared as public.

	
char[NI_MAXSERV] uv_getnameinfo_t.service

	Char array containing the resulting service. It’s null terminated.

Changed in version 1.3.0: the field is declared as public.

See also

The uv_req_t members also apply.

API

	
int uv_getaddrinfo(uv_loop_t*loop, uv_getaddrinfo_t*req, uv_getaddrinfo_cbgetaddrinfo_cb, const char*node, const char*service, const struct addrinfo*hints)

	Asynchronous getaddrinfo(3) [http://linux.die.net/man/3/getaddrinfo].

Either node or service may be NULL but not both.

hints is a pointer to a struct addrinfo with additional address type
constraints, or NULL. Consult man -s 3 getaddrinfo for more details.

Returns 0 on success or an error code < 0 on failure. If successful, the
callback will get called sometime in the future with the lookup result,
which is either:

	status == 0, the res argument points to a valid struct addrinfo, or

	status < 0, the res argument is NULL. See the UV_EAI_* constants.

Call uv_freeaddrinfo() to free the addrinfo structure.

Changed in version 1.3.0: the callback parameter is now allowed to be NULL,
in which case the request will run synchronously.

	
void uv_freeaddrinfo(struct addrinfo*ai)

	Free the struct addrinfo. Passing NULL is allowed and is a no-op.

	
int uv_getnameinfo(uv_loop_t*loop, uv_getnameinfo_t*req, uv_getnameinfo_cbgetnameinfo_cb, const struct sockaddr*addr, intflags)

	Asynchronous getnameinfo(3) [http://linux.die.net/man/3/getnameinfo].

Returns 0 on success or an error code < 0 on failure. If successful, the
callback will get called sometime in the future with the lookup result.
Consult man -s 3 getnameinfo for more details.

Changed in version 1.3.0: the callback parameter is now allowed to be NULL,
in which case the request will run synchronously.

See also

The uv_req_t API functions also apply.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

Shared library handling

libuv provides cross platform utilities for loading shared libraries and
retrieving symbols from them, using the following API.

Data types

	
uv_lib_t

	Shared library data type.

Public members

N/A

API

	
int uv_dlopen(const char*filename, uv_lib_t*lib)

	Opens a shared library. The filename is in utf-8. Returns 0 on success and
-1 on error. Call uv_dlerror() to get the error message.

	
void uv_dlclose(uv_lib_t*lib)

	Close the shared library.

	
int uv_dlsym(uv_lib_t*lib, const char*name, void**ptr)

	Retrieves a data pointer from a dynamic library. It is legal for a symbol
to map to NULL. Returns 0 on success and -1 if the symbol was not found.

	
const char* uv_dlerror(const uv_lib_t*lib)

	Returns the last uv_dlopen() or uv_dlsym() error message.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libuv 1.9.0 API documentation

Threading and synchronization utilities

libuv provides cross-platform implementations for multiple threading and
synchronization primitives. The API largely follows the pthreads API.

Data types

	
uv_thread_t

	Thread data type.

	
void (*uv_thread_cb)(void*arg)

	Callback that is invoked to initialize thread execution. arg is the same
value that was passed to uv_thread_create().

	
uv_key_t

	Thread-local key data type.

	
uv_once_t

	Once-only initializer data type.

	
uv_mutex_t

	Mutex data type.

	
uv_rwlock_t

	Read-write lock data type.

	
uv_sem_t

	Semaphore data type.

	
uv_cond_t

	Condition data type.

	
uv_barrier_t

	Barrier data type.

API

Threads

	
int uv_thread_create(uv_thread_t*tid, uv_thread_cbentry, void*arg)

	
Changed in version 1.4.1: returns a UV_E* error code on failure

	
uv_thread_t uv_thread_self(void)

	

	
int uv_thread_join(uv_thread_t*tid)

	

	
int uv_thread_equal(const uv_thread_t*t1, const uv_thread_t*t2)

	

Thread-local storage

Note

The total thread-local storage size may be limited. That is, it may not be possible to
create many TLS keys.

	
int uv_key_create(uv_key_t*key)

	

	
void uv_key_delete(uv_key_t*key)

	

	
void* uv_key_get(uv_key_t*key)

	

	
void uv_key_set(uv_key_t*key, void*value)

	

Once-only initialization

Runs a function once and only once. Concurrent calls to uv_once() with the
same guard will block all callers except one (it’s unspecified which one).
The guard should be initialized statically with the UV_ONCE_INIT macro.

	
void uv_once(uv_once_t*guard, void (*callback)(void))

	

Mutex locks

Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).

	
int uv_mutex_init(uv_mutex_t*handle)

	

	
void uv_mutex_destroy(uv_mutex_t*handle)

	

	
void uv_mutex_lock(uv_mutex_t*handle)

	

	
int uv_mutex_trylock(uv_mutex_t*handle)

	

	
void uv_mutex_unlock(uv_mutex_t*handle)

	

Read-write locks

Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).

	
int uv_rwlock_init(uv_rwlock_t*rwlock)

	

	
void uv_rwlock_destroy(uv_rwlock_t*rwlock)

	

	
void uv_rwlock_rdlock(uv_rwlock_t*rwlock)

	

	
int uv_rwlock_tryrdlock(uv_rwlock_t*rwlock)

	

	
void uv_rwlock_rdunlock(uv_rwlock_t*rwlock)

	

	
void uv_rwlock_wrlock(uv_rwlock_t*rwlock)

	

	
int uv_rwlock_trywrlock(uv_rwlock_t*rwlock)

	

	
void uv_rwlock_wrunlock(uv_rwlock_t*rwlock)

	

Semaphores

Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).

	
int uv_sem_init(uv_sem_t*sem, unsigned intvalue)

	

	
void uv_sem_destroy(uv_sem_t*sem)

	

	
void uv_sem_post(uv_sem_t*sem)

	

	
void uv_sem_wait(uv_sem_t*sem)

	

	
int uv_sem_trywait(uv_sem_t*sem)

	

Conditions

Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).

Note

Callers should be prepared to deal with spurious wakeups on uv_cond_wait() and
uv_cond_timedwait().

	
int uv_cond_init(uv_cond_t*cond)

	

	
void uv_cond_destroy(uv_cond_t*cond)

	

	
void uv_cond_signal(uv_cond_t*cond)

	

	
void uv_cond_broadcast(uv_cond_t*cond)

	

	
void uv_cond_wait(uv_cond_t*cond, uv_mutex_t*mutex)

	

	
int uv_cond_timedwait(uv_cond_t*cond, uv_mutex_t*mutex, uint64_ttimeout)

	

Barriers

Functions return 0 on success or an error code < 0 (unless the
return type is void, of course).

Note

uv_barrier_wait() returns a value > 0 to an arbitrarily chosen “serializer” thread
to facilitate cleanup, i.e.

if (uv_barrier_wait(&barrier) > 0)
 uv_barrier_destroy(&barrier);

	
int uv_barrier_init(uv_barrier_t*barrier, unsigned intcount)

	

	
void uv_barrier_destroy(uv_barrier_t*barrier)

	

	
int uv_barrier_wait(uv_barrier_t*barrier)

	

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	libuv 1.9.0 API documentation

Miscellaneous utilities

This section contains miscellaneous functions that don’t really belong in any
other section.

Data types

	
uv_buf_t

	Buffer data type.

	
char* uv_buf_t.base

	Pointer to the base of the buffer. Readonly.

	
size_t uv_buf_t.len

	Total bytes in the buffer. Readonly.

Note

On Windows this field is ULONG.

	
void* (*uv_malloc_func)(size_tsize)

	Replacement function for malloc(3) [http://linux.die.net/man/3/malloc].
See uv_replace_allocator().

	
void* (*uv_realloc_func)(void*ptr, size_tsize)

	Replacement function for realloc(3) [http://linux.die.net/man/3/realloc].
See uv_replace_allocator().

	
void* (*uv_calloc_func)(size_tcount, size_tsize)

	Replacement function for calloc(3) [http://linux.die.net/man/3/calloc].
See uv_replace_allocator().

	
void (*uv_free_func)(void*ptr)

	Replacement function for free(3) [http://linux.die.net/man/3/free].
See uv_replace_allocator().

	
uv_file

	Cross platform representation of a file handle.

	
uv_os_sock_t

	Cross platform representation of a socket handle.

	
uv_os_fd_t

	Abstract representation of a file descriptor. On Unix systems this is a
typedef of int and on Windows a HANDLE.

	
uv_rusage_t

	Data type for resource usage results.

typedef struct {
 uv_timeval_t ru_utime; /* user CPU time used */
 uv_timeval_t ru_stime; /* system CPU time used */
 uint64_t ru_maxrss; /* maximum resident set size */
 uint64_t ru_ixrss; /* integral shared memory size */
 uint64_t ru_idrss; /* integral unshared data size */
 uint64_t ru_isrss; /* integral unshared stack size */
 uint64_t ru_minflt; /* page reclaims (soft page faults) */
 uint64_t ru_majflt; /* page faults (hard page faults) */
 uint64_t ru_nswap; /* swaps */
 uint64_t ru_inblock; /* block input operations */
 uint64_t ru_oublock; /* block output operations */
 uint64_t ru_msgsnd; /* IPC messages sent */
 uint64_t ru_msgrcv; /* IPC messages received */
 uint64_t ru_nsignals; /* signals received */
 uint64_t ru_nvcsw; /* voluntary context switches */
 uint64_t ru_nivcsw; /* involuntary context switches */
} uv_rusage_t;

	
uv_cpu_info_t

	Data type for CPU information.

typedef struct uv_cpu_info_s {
 char* model;
 int speed;
 struct uv_cpu_times_s {
 uint64_t user;
 uint64_t nice;
 uint64_t sys;
 uint64_t idle;
 uint64_t irq;
 } cpu_times;
} uv_cpu_info_t;

	
uv_interface_address_t

	Data type for interface addresses.

typedef struct uv_interface_address_s {
 char* name;
 char phys_addr[6];
 int is_internal;
 union {
 struct sockaddr_in address4;
 struct sockaddr_in6 address6;
 } address;
 union {
 struct sockaddr_in netmask4;
 struct sockaddr_in6 netmask6;
 } netmask;
} uv_interface_address_t;

	
uv_passwd_t

	Data type for password file information.

typedef struct uv_passwd_s {
 char* username;
 long uid;
 long gid;
 char* shell;
 char* homedir;
} uv_passwd_t;

API

	
uv_handle_type uv_guess_handle(uv_filefile)

	Used to detect what type of stream should be used with a given file
descriptor. Usually this will be used during initialization to guess the
type of the stdio streams.

For isatty(3) [http://linux.die.net/man/3/isatty] equivalent functionality use this function and test
for UV_TTY.

	
int uv_replace_allocator(uv_malloc_funcmalloc_func, uv_realloc_funcrealloc_func, uv_calloc_funccalloc_func, uv_free_funcfree_func)

	
New in version 1.6.0.

Override the use of the standard library’s malloc(3) [http://linux.die.net/man/3/malloc],
calloc(3) [http://linux.die.net/man/3/calloc], realloc(3) [http://linux.die.net/man/3/realloc], free(3) [http://linux.die.net/man/3/free], memory allocation
functions.

This function must be called before any other libuv function is called or
after all resources have been freed and thus libuv doesn’t reference
any allocated memory chunk.

On success, it returns 0, if any of the function pointers is NULL it
returns UV_EINVAL.

Warning

There is no protection against changing the allocator multiple
times. If the user changes it they are responsible for making
sure the allocator is changed while no memory was allocated with
the previous allocator, or that they are compatible.

	
uv_buf_t uv_buf_init(char*base, unsigned intlen)

	Constructor for uv_buf_t.

Due to platform differences the user cannot rely on the ordering of the
base and len members of the uv_buf_t struct. The user is responsible for
freeing base after the uv_buf_t is done. Return struct passed by value.

	
char** uv_setup_args(intargc, char**argv)

	Store the program arguments. Required for getting / setting the process title.

	
int uv_get_process_title(char*buffer, size_tsize)

	Gets the title of the current process.

	
int uv_set_process_title(const char*title)

	Sets the current process title.

	
int uv_resident_set_memory(size_t*rss)

	Gets the resident set size (RSS) for the current process.

	
int uv_uptime(double*uptime)

	Gets the current system uptime.

	
int uv_getrusage(uv_rusage_t*rusage)

	Gets the resource usage measures for the current process.

Note

On Windows not all fields are set, the unsupported fields are filled with zeroes.

	
int uv_cpu_info(uv_cpu_info_t**cpu_infos, int*count)

	Gets information about the CPUs on the system. The cpu_infos array will
have count elements and needs to be freed with uv_free_cpu_info().

	
void uv_free_cpu_info(uv_cpu_info_t*cpu_infos, intcount)

	Frees the cpu_infos array previously allocated with uv_cpu_info().

	
int uv_interface_addresses(uv_interface_address_t**addresses, int*count)

	Gets address information about the network interfaces on the system. An
array of count elements is allocated and returned in addresses. It must
be freed by the user, calling uv_free_interface_addresses().

	
void uv_free_interface_addresses(uv_interface_address_t*addresses, intcount)

	Free an array of uv_interface_address_t which was returned by
uv_interface_addresses().

	
void uv_loadavg(doubleavg[3])

	Gets the load average. See: http://en.wikipedia.org/wiki/Load_(computing)

Note

Returns [0,0,0] on Windows (i.e., it’s not implemented).

	
int uv_ip4_addr(const char*ip, intport, struct sockaddr_in*addr)

	Convert a string containing an IPv4 addresses to a binary structure.

	
int uv_ip6_addr(const char*ip, intport, struct sockaddr_in6*addr)

	Convert a string containing an IPv6 addresses to a binary structure.

	
int uv_ip4_name(const struct sockaddr_in*src, char*dst, size_tsize)

	Convert a binary structure containing an IPv4 address to a string.

	
int uv_ip6_name(const struct sockaddr_in6*src, char*dst, size_tsize)

	Convert a binary structure containing an IPv6 address to a string.

	
int uv_inet_ntop(intaf, const void*src, char*dst, size_tsize)

	

	
int uv_inet_pton(intaf, const char*src, void*dst)

	Cross-platform IPv6-capable implementation of inet_ntop(3) [http://linux.die.net/man/3/inet_ntop]
and inet_pton(3) [http://linux.die.net/man/3/inet_pton]. On success they return 0. In case of error
the target dst pointer is unmodified.

	
int uv_exepath(char*buffer, size_t*size)

	Gets the executable path.

	
int uv_cwd(char*buffer, size_t*size)

	Gets the current working directory.

Changed in version 1.1.0: On Unix the path no longer ends in a slash.

	
int uv_chdir(const char*dir)

	Changes the current working directory.

	
int uv_os_homedir(char*buffer, size_t*size)

	Gets the current user’s home directory. On Windows, uv_os_homedir() first
checks the USERPROFILE environment variable using
GetEnvironmentVariableW(). If USERPROFILE is not set,
GetUserProfileDirectoryW() is called. On all other operating systems,
uv_os_homedir() first checks the HOME environment variable using
getenv(3) [http://linux.die.net/man/3/getenv]. If HOME is not set, getpwuid_r(3) [http://linux.die.net/man/3/getpwuid_r] is called. The
user’s home directory is stored in buffer. When uv_os_homedir() is
called, size indicates the maximum size of buffer. On success size is set
to the string length of buffer. On UV_ENOBUFS failure size is set to the
required length for buffer, including the null byte.

Warning

uv_os_homedir() is not thread safe.

New in version 1.6.0.

	
int uv_os_tmpdir(char*buffer, size_t*size)

	Gets the temp directory. On Windows, uv_os_tmpdir() uses GetTempPathW().
On all other operating systems, uv_os_tmpdir() uses the first environment
variable found in the ordered list TMPDIR, TMP, TEMP, and TEMPDIR.
If none of these are found, the path “/tmp” is used, or, on Android,
“/data/local/tmp” is used. The temp directory is stored in buffer. When
uv_os_tmpdir() is called, size indicates the maximum size of buffer.
On success size is set to the string length of buffer (which does not
include the terminating null). On UV_ENOBUFS failure size is set to the
required length for buffer, including the null byte.

Warning

uv_os_tmpdir() is not thread safe.

New in version 1.9.0.

	
int uv_os_get_passwd(uv_passwd_t*pwd)

	Gets a subset of the password file entry for the current effective uid (not
the real uid). The populated data includes the username, euid, gid, shell,
and home directory. On non-Windows systems, all data comes from
getpwuid_r(3) [http://linux.die.net/man/3/getpwuid_r]. On Windows, uid and gid are set to -1 and have no
meaning, and shell is NULL. After successfully calling this function, the
memory allocated to pwd needs to be freed with
uv_os_free_passwd().

New in version 1.9.0.

	
void uv_os_free_passwd(uv_passwd_t*pwd)

	Frees the pwd memory previously allocated with uv_os_get_passwd().

New in version 1.9.0.

	
uint64_t uv_get_total_memory(void)

	Gets memory information (in bytes).

	
uint64_t uv_hrtime(void)

	Returns the current high-resolution real time. This is expressed in
nanoseconds. It is relative to an arbitrary time in the past. It is not
related to the time of day and therefore not subject to clock drift. The
primary use is for measuring performance between intervals.

Note

Not every platform can support nanosecond resolution; however, this value will always
be in nanoseconds.

	
void uv_print_all_handles(uv_loop_t*loop, FILE*stream)

	Prints all handles associated with the given loop to the given stream.

Example:

uv_print_all_handles(uv_default_loop(), stderr);
/*
[--I] signal 0x1a25ea8
[-AI] async 0x1a25cf0
[R--] idle 0x1a7a8c8
*/

The format is [flags] handle-type handle-address. For flags:

	R is printed for a handle that is referenced

	A is printed for a handle that is active

	I is printed for a handle that is internal

Warning

This function is meant for ad hoc debugging, there is no API/ABI
stability guarantees.

New in version 1.8.0.

	
void uv_print_active_handles(uv_loop_t*loop, FILE*stream)

	This is the same as uv_print_all_handles() except only active handles
are printed.

Warning

This function is meant for ad hoc debugging, there is no API/ABI
stability guarantees.

New in version 1.8.0.

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	libuv 1.9.0 API documentation

Index

 U

U

 	

 	uv_accept (C function)

 	uv_after_work_cb (C type)

 	uv_alloc_cb (C type)

 	uv_any_handle (C type)

 	uv_any_req (C type)

 	uv_async_cb (C type)

 	uv_async_init (C function)

 	uv_async_send (C function)

 	uv_async_t (C type)

 	uv_backend_fd (C function)

 	uv_backend_timeout (C function)

 	uv_barrier_destroy (C function)

 	uv_barrier_init (C function)

 	uv_barrier_t (C type)

 	uv_barrier_wait (C function)

 	uv_buf_init (C function)

 	uv_buf_t (C type)

 	uv_buf_t.uv_buf_t.base (C member)

 	uv_buf_t.uv_buf_t.len (C member)

 	uv_calloc_func (C type)

 	uv_cancel (C function)

 	uv_chdir (C function)

 	uv_check_cb (C type)

 	uv_check_init (C function)

 	uv_check_start (C function)

 	uv_check_stop (C function)

 	uv_check_t (C type)

 	uv_close (C function)

 	uv_close_cb (C type)

 	uv_cond_broadcast (C function)

 	uv_cond_destroy (C function)

 	uv_cond_init (C function)

 	uv_cond_signal (C function)

 	uv_cond_t (C type)

 	uv_cond_timedwait (C function)

 	uv_cond_wait (C function)

 	uv_connect_cb (C type)

 	uv_connect_t (C type)

 	uv_connect_t.handle (C member)

 	uv_connection_cb (C type)

 	uv_cpu_info (C function)

 	uv_cpu_info_t (C type)

 	uv_cwd (C function)

 	uv_default_loop (C function)

 	uv_dirent_t (C type)

 	uv_disable_stdio_inheritance (C function)

 	uv_dlclose (C function)

 	uv_dlerror (C function)

 	uv_dlopen (C function)

 	uv_dlsym (C function)

 	UV_E2BIG (C macro)

 	UV_EACCES (C macro)

 	UV_EADDRINUSE (C macro)

 	UV_EADDRNOTAVAIL (C macro)

 	UV_EAFNOSUPPORT (C macro)

 	UV_EAGAIN (C macro)

 	UV_EAI_ADDRFAMILY (C macro)

 	UV_EAI_AGAIN (C macro)

 	UV_EAI_BADFLAGS (C macro)

 	UV_EAI_BADHINTS (C macro)

 	UV_EAI_CANCELED (C macro)

 	UV_EAI_FAIL (C macro)

 	UV_EAI_FAMILY (C macro)

 	UV_EAI_MEMORY (C macro)

 	UV_EAI_NODATA (C macro)

 	UV_EAI_NONAME (C macro)

 	UV_EAI_OVERFLOW (C macro)

 	UV_EAI_PROTOCOL (C macro)

 	UV_EAI_SERVICE (C macro)

 	UV_EAI_SOCKTYPE (C macro)

 	UV_EALREADY (C macro)

 	UV_EBADF (C macro)

 	UV_EBUSY (C macro)

 	UV_ECANCELED (C macro)

 	UV_ECHARSET (C macro)

 	UV_ECONNABORTED (C macro)

 	UV_ECONNREFUSED (C macro)

 	UV_ECONNRESET (C macro)

 	UV_EDESTADDRREQ (C macro)

 	UV_EEXIST (C macro)

 	UV_EFAULT (C macro)

 	UV_EFBIG (C macro)

 	UV_EHOSTUNREACH (C macro)

 	UV_EINTR (C macro)

 	UV_EINVAL (C macro)

 	UV_EIO (C macro)

 	UV_EISCONN (C macro)

 	UV_EISDIR (C macro)

 	UV_ELOOP (C macro)

 	UV_EMFILE (C macro)

 	UV_EMLINK (C macro)

 	UV_EMSGSIZE (C macro)

 	UV_ENAMETOOLONG (C macro)

 	UV_ENETDOWN (C macro)

 	UV_ENETUNREACH (C macro)

 	UV_ENFILE (C macro)

 	UV_ENOBUFS (C macro)

 	UV_ENODEV (C macro)

 	UV_ENOENT (C macro)

 	UV_ENOMEM (C macro)

 	UV_ENONET (C macro)

 	UV_ENOPROTOOPT (C macro)

 	UV_ENOSPC (C macro)

 	UV_ENOSYS (C macro)

 	UV_ENOTCONN (C macro)

 	UV_ENOTDIR (C macro)

 	UV_ENOTEMPTY (C macro)

 	UV_ENOTSOCK (C macro)

 	UV_ENOTSUP (C macro)

 	UV_ENXIO (C macro)

 	UV_EOF (C macro)

 	UV_EPERM (C macro)

 	UV_EPIPE (C macro)

 	UV_EPROTO (C macro)

 	UV_EPROTONOSUPPORT (C macro)

 	UV_EPROTOTYPE (C macro)

 	UV_ERANGE (C macro)

 	UV_EROFS (C macro)

 	uv_err_name (C function)

 	UV_ESHUTDOWN (C macro)

 	UV_ESPIPE (C macro)

 	UV_ESRCH (C macro)

 	UV_ETIMEDOUT (C macro)

 	UV_ETXTBSY (C macro)

 	UV_EXDEV (C macro)

 	uv_exepath (C function)

 	uv_exit_cb (C type)

 	uv_file (C type)

 	uv_fileno (C function)

 	uv_free_cpu_info (C function)

 	uv_free_func (C type)

 	uv_free_interface_addresses (C function)

 	uv_freeaddrinfo (C function)

 	uv_fs_access (C function)

 	uv_fs_chmod (C function)

 	uv_fs_chown (C function)

 	uv_fs_close (C function)

 	uv_fs_event (C type)

 	uv_fs_event_cb (C type)

 	uv_fs_event_flags (C type)

 	uv_fs_event_getpath (C function)

 	uv_fs_event_init (C function)

 	uv_fs_event_start (C function)

 	uv_fs_event_stop (C function)

 	uv_fs_event_t (C type)

 	uv_fs_fchmod (C function)

 	uv_fs_fchown (C function)

 	uv_fs_fdatasync (C function)

 	uv_fs_fstat (C function)

 	uv_fs_fsync (C function)

 	uv_fs_ftruncate (C function)

 	uv_fs_futime (C function)

 	uv_fs_link (C function)

 	uv_fs_lstat (C function)

 	uv_fs_mkdir (C function)

 	uv_fs_mkdtemp (C function)

 	uv_fs_open (C function)

 	uv_fs_poll_cb (C type)

 	uv_fs_poll_getpath (C function)

 	uv_fs_poll_init (C function)

 	uv_fs_poll_start (C function)

 	uv_fs_poll_stop (C function)

 	uv_fs_poll_t (C type)

 	uv_fs_read (C function)

 	uv_fs_readlink (C function)

 	uv_fs_realpath (C function)

 	uv_fs_rename (C function)

 	uv_fs_req_cleanup (C function)

 	uv_fs_rmdir (C function)

 	uv_fs_scandir (C function)

 	uv_fs_scandir_next (C function)

 	uv_fs_sendfile (C function)

 	uv_fs_stat (C function)

 	uv_fs_symlink (C function)

 	uv_fs_t (C type)

 	uv_fs_t.fs_type (C member)

 	uv_fs_t.loop (C member)

 	uv_fs_t.path (C member)

 	uv_fs_t.ptr (C member)

 	uv_fs_t.result (C member)

 	uv_fs_t.statbuf (C member)

 	uv_fs_type (C type)

 	uv_fs_unlink (C function)

 	uv_fs_utime (C function)

 	uv_fs_write (C function)

 	uv_get_process_title (C function)

 	uv_get_total_memory (C function)

 	uv_getaddrinfo (C function)

 	uv_getaddrinfo_cb (C type)

 	uv_getaddrinfo_t (C type)

 	uv_getaddrinfo_t.addrinfo (C member)

 	uv_getaddrinfo_t.loop (C member)

 	uv_getnameinfo (C function)

 	uv_getnameinfo_cb (C type)

 	uv_getnameinfo_t (C type)

 	uv_getnameinfo_t.host (C member)

 	uv_getnameinfo_t.loop (C member)

 	uv_getnameinfo_t.service (C member)

 	uv_getrusage (C function)

 	uv_guess_handle (C function)

 	uv_handle_size (C function)

 	uv_handle_t (C type)

 	uv_handle_t.data (C member)

 	uv_handle_t.loop (C member)

 	uv_has_ref (C function)

 	uv_hrtime (C function)

 	uv_idle_cb (C type)

 	uv_idle_init (C function)

 	uv_idle_start (C function)

 	uv_idle_stop (C function)

 	uv_idle_t (C type)

 	uv_inet_ntop (C function)

 	uv_inet_pton (C function)

 	uv_interface_address_t (C type)

 	uv_interface_addresses (C function)

 	

 	uv_ip4_addr (C function)

 	uv_ip4_name (C function)

 	uv_ip6_addr (C function)

 	uv_ip6_name (C function)

 	uv_is_active (C function)

 	uv_is_closing (C function)

 	uv_is_readable (C function)

 	uv_is_writable (C function)

 	uv_key_create (C function)

 	uv_key_delete (C function)

 	uv_key_get (C function)

 	uv_key_set (C function)

 	uv_key_t (C type)

 	uv_kill (C function)

 	uv_lib_t (C type)

 	uv_listen (C function)

 	uv_loadavg (C function)

 	uv_loop_alive (C function)

 	uv_loop_close (C function)

 	uv_loop_configure (C function)

 	uv_loop_init (C function)

 	uv_loop_size (C function)

 	uv_loop_t (C type)

 	uv_loop_t.data (C member)

 	uv_malloc_func (C type)

 	uv_membership (C type)

 	uv_mutex_destroy (C function)

 	uv_mutex_init (C function)

 	uv_mutex_lock (C function)

 	uv_mutex_t (C type)

 	uv_mutex_trylock (C function)

 	uv_mutex_unlock (C function)

 	uv_now (C function)

 	uv_once (C function)

 	uv_once_t (C type)

 	uv_os_fd_t (C type)

 	uv_os_free_passwd (C function)

 	uv_os_get_passwd (C function)

 	uv_os_homedir (C function)

 	uv_os_sock_t (C type)

 	uv_os_tmpdir (C function)

 	uv_passwd_t (C type)

 	uv_pipe_bind (C function)

 	uv_pipe_connect (C function)

 	uv_pipe_getpeername (C function)

 	uv_pipe_getsockname (C function)

 	uv_pipe_init (C function)

 	uv_pipe_open (C function)

 	uv_pipe_pending_count (C function)

 	uv_pipe_pending_instances (C function)

 	uv_pipe_pending_type (C function)

 	uv_pipe_t (C type)

 	uv_poll_cb (C type)

 	uv_poll_event (C type)

 	uv_poll_init (C function)

 	uv_poll_init_socket (C function)

 	uv_poll_start (C function)

 	uv_poll_stop (C function)

 	uv_poll_t (C type)

 	uv_prepare_cb (C type)

 	uv_prepare_init (C function)

 	uv_prepare_start (C function)

 	uv_prepare_stop (C function)

 	uv_prepare_t (C type)

 	uv_print_active_handles (C function)

 	uv_print_all_handles (C function)

 	uv_process_flags (C type)

 	uv_process_kill (C function)

 	uv_process_options_t (C type)

 	uv_process_options_t.args (C member)

 	uv_process_options_t.cwd (C member)

 	uv_process_options_t.env (C member)

 	uv_process_options_t.exit_cb (C member)

 	uv_process_options_t.file (C member)

 	uv_process_options_t.flags (C member)

 	uv_process_options_t.gid (C member)

 	uv_process_options_t.stdio (C member)

 	uv_process_options_t.stdio_count (C member)

 	uv_process_options_t.uid (C member)

 	uv_process_t (C type)

 	uv_process_t.pid (C member)

 	uv_queue_work (C function)

 	uv_read_cb (C type)

 	uv_read_start (C function)

 	uv_read_stop (C function)

 	uv_realloc_func (C type)

 	uv_recv_buffer_size (C function)

 	uv_ref (C function)

 	uv_replace_allocator (C function)

 	uv_req_size (C function)

 	uv_req_t (C type)

 	uv_req_t.data (C member)

 	uv_req_t.type (C member)

 	uv_resident_set_memory (C function)

 	uv_run (C function)

 	uv_run_mode (C type)

 	uv_rusage_t (C type)

 	uv_rwlock_destroy (C function)

 	uv_rwlock_init (C function)

 	uv_rwlock_rdlock (C function)

 	uv_rwlock_rdunlock (C function)

 	uv_rwlock_t (C type)

 	uv_rwlock_tryrdlock (C function)

 	uv_rwlock_trywrlock (C function)

 	uv_rwlock_wrlock (C function)

 	uv_rwlock_wrunlock (C function)

 	uv_sem_destroy (C function)

 	uv_sem_init (C function)

 	uv_sem_post (C function)

 	uv_sem_t (C type)

 	uv_sem_trywait (C function)

 	uv_sem_wait (C function)

 	uv_send_buffer_size (C function)

 	uv_set_process_title (C function)

 	uv_setup_args (C function)

 	uv_shutdown (C function)

 	uv_shutdown_cb (C type)

 	uv_shutdown_t (C type)

 	uv_shutdown_t.handle (C member)

 	uv_signal_cb (C type)

 	uv_signal_init (C function)

 	uv_signal_start (C function)

 	uv_signal_stop (C function)

 	uv_signal_t (C type)

 	uv_signal_t.signum (C member)

 	uv_spawn (C function)

 	uv_stat_t (C type)

 	uv_stdio_container_t (C type)

 	uv_stdio_container_t.data (C member)

 	uv_stdio_container_t.flags (C member)

 	uv_stdio_flags (C type)

 	uv_stop (C function)

 	uv_stream_set_blocking (C function)

 	uv_stream_t (C type)

 	uv_stream_t.write_queue_size (C member)

 	uv_strerror (C function)

 	uv_tcp_bind (C function)

 	uv_tcp_connect (C function)

 	uv_tcp_getpeername (C function)

 	uv_tcp_getsockname (C function)

 	uv_tcp_init (C function)

 	uv_tcp_init_ex (C function)

 	uv_tcp_keepalive (C function)

 	uv_tcp_nodelay (C function)

 	uv_tcp_open (C function)

 	uv_tcp_simultaneous_accepts (C function)

 	uv_tcp_t (C type)

 	uv_thread_cb (C type)

 	uv_thread_create (C function)

 	uv_thread_equal (C function)

 	uv_thread_join (C function)

 	uv_thread_self (C function)

 	uv_thread_t (C type)

 	uv_timer_again (C function)

 	uv_timer_cb (C type)

 	uv_timer_get_repeat (C function)

 	uv_timer_init (C function)

 	uv_timer_set_repeat (C function)

 	uv_timer_start (C function)

 	uv_timer_stop (C function)

 	uv_timer_t (C type)

 	uv_timespec_t (C type)

 	uv_try_write (C function)

 	uv_tty_get_winsize (C function)

 	uv_tty_init (C function)

 	uv_tty_mode_t (C type)

 	uv_tty_reset_mode (C function)

 	uv_tty_set_mode (C function)

 	uv_tty_t (C type)

 	uv_udp_bind (C function)

 	uv_udp_flags (C type)

 	uv_udp_getsockname (C function)

 	uv_udp_init (C function)

 	uv_udp_init_ex (C function)

 	uv_udp_open (C function)

 	uv_udp_recv_cb (C type)

 	uv_udp_recv_start (C function)

 	uv_udp_recv_stop (C function)

 	uv_udp_send (C function)

 	uv_udp_send_cb (C type)

 	uv_udp_send_t (C type)

 	uv_udp_send_t.handle (C member)

 	uv_udp_set_broadcast (C function)

 	uv_udp_set_membership (C function)

 	uv_udp_set_multicast_interface (C function)

 	uv_udp_set_multicast_loop (C function)

 	uv_udp_set_multicast_ttl (C function)

 	uv_udp_set_ttl (C function)

 	uv_udp_t (C type)

 	uv_udp_t.send_queue_count (C member)

 	uv_udp_t.send_queue_size (C member)

 	uv_udp_try_send (C function)

 	UV_UNKNOWN (C macro)

 	uv_unref (C function)

 	uv_update_time (C function)

 	uv_uptime (C function)

 	uv_version (C function)

 	UV_VERSION_HEX (C macro)

 	UV_VERSION_IS_RELEASE (C macro)

 	UV_VERSION_MAJOR (C macro)

 	UV_VERSION_MINOR (C macro)

 	UV_VERSION_PATCH (C macro)

 	uv_version_string (C function)

 	UV_VERSION_SUFFIX (C macro)

 	uv_walk (C function)

 	uv_walk_cb (C type)

 	uv_work_cb (C type)

 	uv_work_t (C type)

 	uv_work_t.loop (C member)

 	uv_write (C function)

 	uv_write2 (C function)

 	uv_write_cb (C type)

 	uv_write_t (C type)

 	uv_write_t.handle (C member)

 	uv_write_t.send_handle (C member)

 Copyright libuv contributors.
 Created using Sphinx 1.3.5.

 _static/diagrams.key/Data/st1-475.jpg
€
b
e

_static/diagrams.key/Data/st0-311.jpg

_static/diagrams.key/preview.jpg
libuv

Network 1/0

= D G & B

File
1/0

DNS
Ops.

User
code

10CP
=3

Thread Pool

_static/diagrams.key/preview-micro.jpg

_images/architecture.png
libuv

Network 1/0
File DNS User

110 Ops. code
T UDP IR

io_t

10CP
epoll kqueue

_images/loop_iteration.png
Update loop time

No loop Yes

B alive? —[

Run due timers
Call pending callbacks
Run idle handles
Run prepare handles
Poll for I/O
Run check handles

Call close callbacks

—

L

_static/up-pressed.png

_static/comment-bright.png

_static/architecture.png
libuv

Network 1/0
File DNS User

110 Ops. code
T UDP IR

io_t

10CP
epoll kqueue

_static/minus.png

_static/logo.png

_static/up.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/comment.png

_static/loop_iteration.png
Update loop time

No loop Yes

B alive? —[

Run due timers
Call pending callbacks
Run idle handles
Run prepare handles
Poll for I/O
Run check handles

Call close callbacks

—

L

_static/diagrams.key/preview-web.jpg
b

_static/plus.png

